Over the past decades, we have witnessed an increase in the deployment of biopharmaceutical compounds as therapeutics agents. The term biopharmaceutical refers to several biomolecules, such as peptides, oligonucleotides, and monoclonal antibodies. Through the utilization of these molecules, it was possible to target more specifically determined pathological conditions, often increasing the efficacy and safety of current therapeutic protocols. At times, delivering solutions to unmet medical needs. The development of biotherapeutic agents requires command of multiple disciplines, ranging from biotechnology to chemical engineering, in addition to remarkable financial investments. The steady growth of such products request and the progressive expiration of patents, set in motion an important phase of change and renovation among biopharmaceutical industries and CDMOs. Most of the current manufacturing process, both in the synthetic and purification fields, are carried out via batch mode, i.e., by discretizing the operations accordingly operating identical steps repetitively. Such an approach appears only partially productive and, most of the times, is the main route of a sub-optimal resource utilization and reduced profitability. In order to tackle such issues, the biopharmaceutical industry has begun a transition towards continuous manufacturing processes and end-to-end integration. In the large-scale upstream processes, the technological progress has already determined the flourishing of new automatic technologies able to deliver higher throughputs and productivities. In particular, the main outcome of such innovations is the increase of the final titer obtained in the biological perfusions processes and in the chemical synthesis. On the other hand, such process has not grown parallelly for the downstream steps, still implemented via technologies characterized by limited throughput and reduced flexibility. Indeed, purifications procedures are often described as the bottleneck of biomanufacturing, incapable of effectively processing the considerable amount of synthetical crude materials and, in the end, responsible for the larger portion of costs. Aim of this doctoral thesis, was the investigation of several cutting-edge approaches in the separation science field, able to intensify and boost the downstream processes when applied to different biomolecules, mainly peptides and oligonucleotides. Initially, innovative stationary resins were investigated to implement yield and productivity of batch processes besides chromatographic processes eluate´s quality attributes. In second place, we scaled several cases of industrial batch chromatography protocols to twin column continuous operations in order to optimize the process outcomes and contextually achieve automatization. Eventually, twin-column continuous chromatography was used as a tool to accelerate the chromatographic isolation and concentration of product-related impurities. This elucidates its chances in boosting not only the manufacturing processes, but also the related process analytical technology (PAT).
Nel corso degli ultimi decenni si è assistito ad un crescente ricorso ai composti biofarmaceutici quali agenti terapeutici. In tale famiglia rientrano diverse biomolecole, quali ad esempio peptidi, oligonucleotidi e anticorpi monoclonali. Attraverso l’utilizzo di tali molecole è stato possibile contrastare in modo specifico determinate condizioni patologiche, migliorando i correnti protocolli terapeutici, e talvolta portando soluzioni a problematiche irrisolte. Lo sviluppo di agenti bioterapeutici richiede la padronanza di diverse discipline, dalla biotecnologia all’ingegneria chimica, e notevoli investimenti finanziari, spesso non paragonabili a quelli richiesti per lo sviluppo di agenti farmaceutiche di sintesi (small molecule), protagonisti dell’industria farmaceutica del secolo scorso. La constante crescita nella domanda di tali prodotti e il susseguirsi delle scadenze dei brevetti dei primi prodotti biotecnologici, ha messo in moto un importante fase di cambiamento e ristrutturazione all’interno delle industrie biofarmaceutiche e CDMO. Gli attuali processi di produzione, siano essi di sintesi o di purificazione, sono ultimati in batch mode, ovvero tramite una discretizzazione delle operazioni e la conseguente ripetizione di medesimi step in serie. Tale modus operandi risulta poco produttivo e, nel più delle volte, è alla base di un non ottimale uso delle risorse e di una ridotta redditività. Per far fronte a tali problematiche l’industria biofarmaceutica ha iniziato una transizione verso processi di produzione continua e di integrazione degli step di sintesi e purificazione, mirando all’implementazione di strategie di manufacturing end-to-end. Nei processi di sintesi a larga scala (upstream) il progresso tecnologico ha già determinato la nascita di tecnologie a maggior resa e produttività che hanno permesso una automazione dei processi e un incremento dei titoli finali nei processi di perfusione biologica e sintesi chimica. Tuttavia, tale progresso non si è parallelamente verificato negli step di purificazione, tuttora condotti tramite tecnologie caratterizzate da limitato rendimento e scarsa flessibilità. Infatti, nell’ambiente del biomanufacturing le fasi di downstream sono spesso risultate il collo di bottiglia della filiera, incapaci di processare efficacemente le consistenti quantità di crudi di sintesi e, in fine, responsabili della maggior parte dei costi. Scopo di questo percorso di dottorato è stata l’investigazione di differenti ed innovativi approcci all’interno del settore della scienza delle separazioni, capaci di intensificare i processi di downstream e polishing applicati a differenti classi di biomolecole, in particolar modo polipeptidi ed oligonucleotidi. In primis, innovative resine stazionarie sono state investigate in modo da implementare i valori di resa e produttività dei processi batch e gli attributi di qualità degli eluati del processo cromatografico. In secondo luogo, differenti tecnologie di cromatografia continua multi-colonna sono state investigate, traslando metodiche batch a continue per più molecole, al fine di ottimizzare gli output dei singoli casi industriali e contestualmente di automatizzare il processo in esame. Infine, nuove metodologie di cromatografia continua sono state applicate ed esaminate col fine di intensificare le tecnologie analitiche applicate al processo produttivo (PAT).
Intensification of purification processes in the production of oligonucleotide and peptide therapeutics
LIEVORE, GIULIO
2023
Abstract
Over the past decades, we have witnessed an increase in the deployment of biopharmaceutical compounds as therapeutics agents. The term biopharmaceutical refers to several biomolecules, such as peptides, oligonucleotides, and monoclonal antibodies. Through the utilization of these molecules, it was possible to target more specifically determined pathological conditions, often increasing the efficacy and safety of current therapeutic protocols. At times, delivering solutions to unmet medical needs. The development of biotherapeutic agents requires command of multiple disciplines, ranging from biotechnology to chemical engineering, in addition to remarkable financial investments. The steady growth of such products request and the progressive expiration of patents, set in motion an important phase of change and renovation among biopharmaceutical industries and CDMOs. Most of the current manufacturing process, both in the synthetic and purification fields, are carried out via batch mode, i.e., by discretizing the operations accordingly operating identical steps repetitively. Such an approach appears only partially productive and, most of the times, is the main route of a sub-optimal resource utilization and reduced profitability. In order to tackle such issues, the biopharmaceutical industry has begun a transition towards continuous manufacturing processes and end-to-end integration. In the large-scale upstream processes, the technological progress has already determined the flourishing of new automatic technologies able to deliver higher throughputs and productivities. In particular, the main outcome of such innovations is the increase of the final titer obtained in the biological perfusions processes and in the chemical synthesis. On the other hand, such process has not grown parallelly for the downstream steps, still implemented via technologies characterized by limited throughput and reduced flexibility. Indeed, purifications procedures are often described as the bottleneck of biomanufacturing, incapable of effectively processing the considerable amount of synthetical crude materials and, in the end, responsible for the larger portion of costs. Aim of this doctoral thesis, was the investigation of several cutting-edge approaches in the separation science field, able to intensify and boost the downstream processes when applied to different biomolecules, mainly peptides and oligonucleotides. Initially, innovative stationary resins were investigated to implement yield and productivity of batch processes besides chromatographic processes eluate´s quality attributes. In second place, we scaled several cases of industrial batch chromatography protocols to twin column continuous operations in order to optimize the process outcomes and contextually achieve automatization. Eventually, twin-column continuous chromatography was used as a tool to accelerate the chromatographic isolation and concentration of product-related impurities. This elucidates its chances in boosting not only the manufacturing processes, but also the related process analytical technology (PAT).File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis - Lievore_PDFA.pdf
accesso aperto
Descrizione: PhD Thesis - Giulio Lievore (PDFA)
Tipologia:
Tesi di dottorato
Dimensione
30.11 MB
Formato
Adobe PDF
|
30.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.