Heat pumps perform better when coupled with ground as thermal source than with air. In literature, several studies and applications suggest and analyse the use of phase change materials (PCMs) coupled with single or double U-tube vertical borehole heat exchangers (BHEs). Usually, PCMs are mixed with the grouting material during the installation. An alternative solution to vertical BHEs is the use of horizontal ground heat exchangers (HGHEs). The present work investigates the possibility of coupling PCMs with a flat-panel HGHE installed inside a trench 2 m under the ground surface. The study analyses the case in which PCMs are adjacent to the HGHE, taking a cue from alternative coupling technologies which have PCMs added to the backfilling material of the trench where the HGHE is installed. The analysis has been conducted with COMSOL software tool. A simulation model of the system was developed to carry out a parametric analysis. The objective of the simulations is the investigation of the thermal behaviour of the HGHE patent pending coupled with PCMs under cycles of operation which represent how the heat pump could work in GSHP system. The results show the meaningful difference of using the PCM in direct contact with the HGHE.

Enhancement of shallow ground heat exchanger with phase change material

Emmi, Giuseppe
Primo
;
Bottarelli, Michele
Ultimo
2023

Abstract

Heat pumps perform better when coupled with ground as thermal source than with air. In literature, several studies and applications suggest and analyse the use of phase change materials (PCMs) coupled with single or double U-tube vertical borehole heat exchangers (BHEs). Usually, PCMs are mixed with the grouting material during the installation. An alternative solution to vertical BHEs is the use of horizontal ground heat exchangers (HGHEs). The present work investigates the possibility of coupling PCMs with a flat-panel HGHE installed inside a trench 2 m under the ground surface. The study analyses the case in which PCMs are adjacent to the HGHE, taking a cue from alternative coupling technologies which have PCMs added to the backfilling material of the trench where the HGHE is installed. The analysis has been conducted with COMSOL software tool. A simulation model of the system was developed to carry out a parametric analysis. The objective of the simulations is the investigation of the thermal behaviour of the HGHE patent pending coupled with PCMs under cycles of operation which represent how the heat pump could work in GSHP system. The results show the meaningful difference of using the PCM in direct contact with the HGHE.
2023
Emmi, Giuseppe; Bottarelli, Michele
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960148123002306-main (1).pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.45 MB
Formato Adobe PDF
4.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0960148123002306-main.pdf

embargo fino al 17/02/2025

Descrizione: versione post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2504870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact