The use of the HVSR method on single-station microtremor measurements is well documented in small alluvial plains for bedrock mapping. In large sedimentary basins, like the Po Plain, its application is still debated. To shed some light on this issue, we investigated two seismogenic structures buried below the Po Plain Quaternary deposits: the Mirandola and Casaglia anticlines. We acquired and analysed a dense distribution of HVSR data covering the two areas and mapped the frequency and amplitude values of the observed resonance peaks. The top of both anticlines is highlighted by high amplitude peaks picturing E-W elongated sectors with high-impedance contrast, where Quaternary deposits are reduced in thickness to about 100-130 m and directly overlay the Pliocene (Mirandola) and Miocene (Casaglia) marine units. In Mirandola, the high-amplitude peaks also correspond to higher resonance frequencies, while in Casaglia the distribution of resonance frequencies is relatively uniform. The combination of peak frequency and amplitude information on a dense grid of measurement points is thus confirmed to be useful for identifying and mapping buried geological structures such as structural highs. Further modelling is being carried out to estimate the depth of the surface responsible for the observed resonances, through calibration with borehole information.

Imaging the Mirandola and Casaglia anticlines, northern Italy, with HVSR frequencies and amplitudes.

G. Tarabusi;R. Caputo
2022

Abstract

The use of the HVSR method on single-station microtremor measurements is well documented in small alluvial plains for bedrock mapping. In large sedimentary basins, like the Po Plain, its application is still debated. To shed some light on this issue, we investigated two seismogenic structures buried below the Po Plain Quaternary deposits: the Mirandola and Casaglia anticlines. We acquired and analysed a dense distribution of HVSR data covering the two areas and mapped the frequency and amplitude values of the observed resonance peaks. The top of both anticlines is highlighted by high amplitude peaks picturing E-W elongated sectors with high-impedance contrast, where Quaternary deposits are reduced in thickness to about 100-130 m and directly overlay the Pliocene (Mirandola) and Miocene (Casaglia) marine units. In Mirandola, the high-amplitude peaks also correspond to higher resonance frequencies, while in Casaglia the distribution of resonance frequencies is relatively uniform. The combination of peak frequency and amplitude information on a dense grid of measurement points is thus confirmed to be useful for identifying and mapping buried geological structures such as structural highs. Further modelling is being carried out to estimate the depth of the surface responsible for the observed resonances, through calibration with borehole information.
2022
Seismic hazard, blind anticline, single station microtremor, HVSR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2503110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact