Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.
Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators
Zambelli C.;Olivo P.;
2022
Abstract
Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.File | Dimensione | Formato | |
---|---|---|---|
irps_2022_manuscript_draft - EP_IRIS.pdf
solo gestori archivio
Tipologia:
Post-print
Licenza:
Copyright dell'editore
Dimensione
10.32 MB
Formato
Adobe PDF
|
10.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Statistical_model_of_program_verify_algorithms_in_resistive-switching_memories_for_in-memory_neural_network_accelerators.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
11.04 MB
Formato
Adobe PDF
|
11.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.