Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.

Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators

Zambelli C.;Olivo P.;
2022

Abstract

Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.
2022
9781665479509
deep neural network accelerators; in-memory computing; physical modeling; resistive-switching random access memory (RRAM)
File in questo prodotto:
File Dimensione Formato  
irps_2022_manuscript_draft - EP_IRIS.pdf

solo gestori archivio

Tipologia: Post-print
Licenza: Copyright dell'editore
Dimensione 10.32 MB
Formato Adobe PDF
10.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Statistical_model_of_program_verify_algorithms_in_resistive-switching_memories_for_in-memory_neural_network_accelerators.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 11.04 MB
Formato Adobe PDF
11.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2501092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact