In this paper we investigate a typical phenomenon of congested traffic: the stop-and-go waves. Since modelling properly this phenomenon is crucial for developing techniques aimed at reducing it, we present two different models: a microscopic and a macroscopic one, both of them able to reproduce stop-and-go waves. In the former, vehicles’ dynamics are described by a second-order microscopic Follow-the-Leader model, which is calibrated and validated by real measurements. Data are analysed and compared with the numerical solutions computed by the microscopic model. The latter provides a description of traffic dynamic via the macroscopic second-order CGARZ model. With the numerical implementation, by means of the 2CTM scheme, we test the ability of the model of capturing stop-and-go waves. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Stop & Go waves: a microscopic and a macroscopic description
Iacomini EUltimo
2021
Abstract
In this paper we investigate a typical phenomenon of congested traffic: the stop-and-go waves. Since modelling properly this phenomenon is crucial for developing techniques aimed at reducing it, we present two different models: a microscopic and a macroscopic one, both of them able to reproduce stop-and-go waves. In the former, vehicles’ dynamics are described by a second-order microscopic Follow-the-Leader model, which is calibrated and validated by real measurements. Data are analysed and compared with the numerical solutions computed by the microscopic model. The latter provides a description of traffic dynamic via the macroscopic second-order CGARZ model. With the numerical implementation, by means of the 2CTM scheme, we test the ability of the model of capturing stop-and-go waves. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.File | Dimensione | Formato | |
---|---|---|---|
Book_chapter.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.