In this paper we investigate the sensitivity of the LWR model on network to its parameters and to the network itself. The quantification of sensitivity is obtained by measuring the Wasserstein distance between two LWR solutions corresponding to different inputs. To this end, we propose a numerical method to approximate the Wasserstein distance between two density distributions defined on a network. We found a large sensitivity to the traffic distribution at junctions, the network size, and the network topology.
Sensitivity analysis of the LWR model for traffic forecast on large networks using Wasserstein distance
Iacomini E.
2018
Abstract
In this paper we investigate the sensitivity of the LWR model on network to its parameters and to the network itself. The quantification of sensitivity is obtained by measuring the Wasserstein distance between two LWR solutions corresponding to different inputs. To this end, we propose a numerical method to approximate the Wasserstein distance between two density distributions defined on a network. We found a large sensitivity to the traffic distribution at junctions, the network size, and the network topology.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.