This paper concerns the numerical analysis aimed at reproducing the centrifuge test conducted on a clayey silty sand river embankment, compacted in unsaturated conditions and subjected to a simulated flood event. To investigate the observed behavior during different stages of the test, characterized by incremental acceleration fields, a finite element simulation of the small-scale centrifuge model was developed. An accurate calibration of the hydro-mechanical soil parameters based on a preceding laboratory campaign was used to simulate the centrifuge test. Then, a comparison between the results of numerical simulation and experimental data, collected during centrifuge test, allowed to validate the fully-coupled numerical analysis at the small-scale model and to interpret the hydro-mechanical behavior of the embankment.
On the hydro-mechanical behavior of an unsaturated river embankment: centrifuge testing and numerical analysis
Giretti, Daniela;Fioravante, VincenzoUltimo
2022
Abstract
This paper concerns the numerical analysis aimed at reproducing the centrifuge test conducted on a clayey silty sand river embankment, compacted in unsaturated conditions and subjected to a simulated flood event. To investigate the observed behavior during different stages of the test, characterized by incremental acceleration fields, a finite element simulation of the small-scale centrifuge model was developed. An accurate calibration of the hydro-mechanical soil parameters based on a preceding laboratory campaign was used to simulate the centrifuge test. Then, a comparison between the results of numerical simulation and experimental data, collected during centrifuge test, allowed to validate the fully-coupled numerical analysis at the small-scale model and to interpret the hydro-mechanical behavior of the embankment.File | Dimensione | Formato | |
---|---|---|---|
ICPMG2022_Dodaro et al. rev ED.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
614.18 kB
Formato
Adobe PDF
|
614.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.