The multi-hazard risk assessment of urban areas represents a comprehensive approach that can be used to reduce, manage and overcome the risks arising from the combination of different natural hazards. This paper presents a methodology for multi-hazard risk assessment based on Spatial Multi-Criteria Decision Making. The PROMETHEE method was used to assess multi-hazard risks caused by seismic, flood and extreme sea waves impact. The methodology is applied for multi-hazard risk evaluation of the urban area of Kaštel Kambelovac, located on the Croatian coast of the Adriatic Sea. The settlement is placed in a zone of high seismic risk with a large number of old stone historical buildings which are vulnerable to the earthquakes. Being located along the low-lying coast, this area is also threatened by floods due to climate change-induced sea level rises. Furthermore, the settlement is exposed to flooding caused by extreme sea waves generated by severe wind. In the present contribution, the multi-hazard risk is assessed for different scenarios and different levels, based on exposure and vulnerability for each of the natural hazards and the influence of additional criteria to the overall risk in homogenous zones. Single-risk analysis has shown that the seismic risk is dominant for the whole pilot area. The results of multi-hazard assessment have shown that in all combinations the highest risk is present in the historical part of Kaštel Kambelovac. This is because the historical part is most exposed to sea floods and extreme waves, as well as due to the fact that a significant number of historical buildings is located in this area.

Methodology for the Assessment of Multi-Hazard Risk in Urban Homogenous Zones

Benvenuti E.;
2022

Abstract

The multi-hazard risk assessment of urban areas represents a comprehensive approach that can be used to reduce, manage and overcome the risks arising from the combination of different natural hazards. This paper presents a methodology for multi-hazard risk assessment based on Spatial Multi-Criteria Decision Making. The PROMETHEE method was used to assess multi-hazard risks caused by seismic, flood and extreme sea waves impact. The methodology is applied for multi-hazard risk evaluation of the urban area of Kaštel Kambelovac, located on the Croatian coast of the Adriatic Sea. The settlement is placed in a zone of high seismic risk with a large number of old stone historical buildings which are vulnerable to the earthquakes. Being located along the low-lying coast, this area is also threatened by floods due to climate change-induced sea level rises. Furthermore, the settlement is exposed to flooding caused by extreme sea waves generated by severe wind. In the present contribution, the multi-hazard risk is assessed for different scenarios and different levels, based on exposure and vulnerability for each of the natural hazards and the influence of additional criteria to the overall risk in homogenous zones. Single-risk analysis has shown that the seismic risk is dominant for the whole pilot area. The results of multi-hazard assessment have shown that in all combinations the highest risk is present in the historical part of Kaštel Kambelovac. This is because the historical part is most exposed to sea floods and extreme waves, as well as due to the fact that a significant number of historical buildings is located in this area.
2022
Mladineo, N.; Mladineo, M.; Benvenuti, E.; Kekez, T.; Nikolic, Z.
File in questo prodotto:
File Dimensione Formato  
applsci-12-12843-v3_compressed.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2500335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact