An iridium-catalyzed reductive generation of both stabilized and unstabilized azomethine ylides and their application to functionalized pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions is described. Proceeding under mild reaction conditions from both amide and lactam precursors possessing a suitably positioned electron-withdrawing or a trimethylsilyl group, using 1 mol% Vaska's complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal reductant, a broad range of (un)stabilized azomethine ylides were accessible. Subsequent regio- and diastereoselective, inter- and intramolecular dipolar cycloaddition reactions with variously substituted electron-deficient alkenes enabled ready and efficient access to structurally complex pyrrolidine architectures. Density functional theory (DFT) calculations of the dipolar cycloaddition reactions uncovered an intimate balance between asynchronicity and interaction energies of transition structures, which ultimately control the unusual selectivities observed in certain cases.

General Pyrrolidine Synthesis via Iridium-Catalyzed Reductive Azomethine Ylide Generation from Tertiary Amides and Lactams

Graziano Di Carmine;
2021

Abstract

An iridium-catalyzed reductive generation of both stabilized and unstabilized azomethine ylides and their application to functionalized pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions is described. Proceeding under mild reaction conditions from both amide and lactam precursors possessing a suitably positioned electron-withdrawing or a trimethylsilyl group, using 1 mol% Vaska's complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal reductant, a broad range of (un)stabilized azomethine ylides were accessible. Subsequent regio- and diastereoselective, inter- and intramolecular dipolar cycloaddition reactions with variously substituted electron-deficient alkenes enabled ready and efficient access to structurally complex pyrrolidine architectures. Density functional theory (DFT) calculations of the dipolar cycloaddition reactions uncovered an intimate balance between asynchronicity and interaction energies of transition structures, which ultimately control the unusual selectivities observed in certain cases.
2021
Yamazaki, Ken; Gabriel, Pablo; DI CARMINE, Graziano; Pedroni, Julia; Farizyan, Mirxan; Hamlin, Trevor A.; Dixon, Darren J.
File in questo prodotto:
File Dimensione Formato  
acscatal.1c01589.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2499321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact