Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.

SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue

Vezzani, Bianca
Primo
;
Neri, Margherita
Secondo
;
Papi, Alberto;Contoli, Marco
Penultimo
;
Giorgi, Carlotta
Ultimo
2022

Abstract

Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.
2022
Vezzani, Bianca; Neri, Margherita; D'Errico, Stefano; Papi, Alberto; Contoli, Marco; Giorgi, Carlotta
File in questo prodotto:
File Dimensione Formato  
pathogens-11-01390.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 567.68 kB
Formato Adobe PDF
567.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2498213
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact