The use of OCR software to convert printed characters to digital text is a fundamental tool within diachronic approaches to Corpus-assisted discourse Studies. However, OCR software is not totally accurate, and the resulting error rate may compromise the qualitative analysis of the studies. This paper proposes a mixed qualitative-quantitative approach to OCR error detection and correction in order to develop a methodology for enhancing the quality of historical corpora. We applied the developed methodology to two case studies on newspapers of the beginning of the 20th century for the linguistic analysis of the metaphors representing migration and pandemics. The outcome of this project consists in a set of rules which are, eventually, valid for different contexts and applicable to different corpora and which can be reproduced and reused. The proposed procedure, in terms of computational readability, is aimed at making more readable and searchable the vast array of historical text corpora which are, at the moment, only partially usable given the high error rate introduced by an OCR software.
L'uso di software di riconoscimento OCR per convertire i caratteri stampati in testo digitale è uno strumento fondamentale per quanto riguarda l'ambito di studio degli approcci diacronici all’analisi del discorso politico attraverso i corpora (CADS studies). Tuttavia, i software OCR non sono totalmente affidabili, e il loro tasso di fallibilità può compromettere l'analisi. Questo articolo propone un approccio qualitativo-quantitativo al rilevamento e alla correzione degli errori post scansione OCR al fine di sviluppare una metodologia per migliorare la qualità dei corpora all’interno degli studi storici. Abbiamo applicato la metodologia sviluppata a due casi di studio su giornali dell'inizio del XX secolo per l'analisi linguistica delle rappresentazioni metaforiche delle migrazioni e delle pandemie. Il risultato di questo progetto consiste in un insieme di regole che sono valide per diversi contesti e applicabili a diversi corpora e che possono essere riutilizzate. La procedura proposta, in termini di leggibilità computazionale, ha lo scopo di rendere più leggibile e ricercabile la vasta gamma di corpora di testi storici che sono, al momento, solo parzialmente utilizzabili dato l'alto tasso di errore derivante da un software di riconoscimento OCR.
OCR Correction for Corpus-assisted Discourse Studies: A Case Study of Old Newspapers
Del Fante, Dario
Primo
;
2021
Abstract
The use of OCR software to convert printed characters to digital text is a fundamental tool within diachronic approaches to Corpus-assisted discourse Studies. However, OCR software is not totally accurate, and the resulting error rate may compromise the qualitative analysis of the studies. This paper proposes a mixed qualitative-quantitative approach to OCR error detection and correction in order to develop a methodology for enhancing the quality of historical corpora. We applied the developed methodology to two case studies on newspapers of the beginning of the 20th century for the linguistic analysis of the metaphors representing migration and pandemics. The outcome of this project consists in a set of rules which are, eventually, valid for different contexts and applicable to different corpora and which can be reproduced and reused. The proposed procedure, in terms of computational readability, is aimed at making more readable and searchable the vast array of historical text corpora which are, at the moment, only partially usable given the high error rate introduced by an OCR software.File | Dimensione | Formato | |
---|---|---|---|
13689-Article Text-53135-2-10-20220120-1.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
495.68 kB
Formato
Adobe PDF
|
495.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.