We prove that the first eigenvalue of the fractional Dirichlet–Laplacian of order s on a simply connected set of the plane can be bounded from below in terms of its inradius only. This is valid for 1 / 2 < s< 1 and we show that this condition is sharp, i.e., for 0 < s≤ 1 / 2 such a lower bound is not possible. The constant appearing in the estimate has the correct asymptotic behavior with respect to s, as it permits to recover a classical result by Makai and Hayman in the limit s↗ 1. The paper is as self-contained as possible.

The fractional Makai–Hayman inequality

Brasco L.
Co-primo
2022

Abstract

We prove that the first eigenvalue of the fractional Dirichlet–Laplacian of order s on a simply connected set of the plane can be bounded from below in terms of its inradius only. This is valid for 1 / 2 < s< 1 and we show that this condition is sharp, i.e., for 0 < s≤ 1 / 2 such a lower bound is not possible. The constant appearing in the estimate has the correct asymptotic behavior with respect to s, as it permits to recover a classical result by Makai and Hayman in the limit s↗ 1. The paper is as self-contained as possible.
2022
Bianchi, F.; Brasco, L.
File in questo prodotto:
File Dimensione Formato  
biabra_makhay_final_rev.pdf

solo gestori archivio

Descrizione: Post-print
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s10231-022-01206-w.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2497473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact