We consider a reaction–diffusion equation with a convection term in one space variable, where the diffusion changes sign from the positive to the negative and the reaction term is bistable. We study the existence of wavefront solutions, their uniqueness and regularity. The presence of convection reveals several new features of wavefronts: according to the mutual positions of the diffusivity and reaction, profiles can occur either for a single value of the speed or for a bounded interval of such values; uniqueness (up to shifts) is lost; moreover, plateaus of arbitrary length can appear; profiles can be singular where the diffusion vanishes.

Diffusion–convection reaction equations with sign-changing diffusivity and bistable reaction term

Corli A.;
2022

Abstract

We consider a reaction–diffusion equation with a convection term in one space variable, where the diffusion changes sign from the positive to the negative and the reaction term is bistable. We study the existence of wavefront solutions, their uniqueness and regularity. The presence of convection reveals several new features of wavefronts: according to the mutual positions of the diffusivity and reaction, profiles can occur either for a single value of the speed or for a bounded interval of such values; uniqueness (up to shifts) is lost; moreover, plateaus of arbitrary length can appear; profiles can be singular where the diffusion vanishes.
2022
Berti, D.; Corli, A.; Malaguti, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2496973
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact