In this study we have examined the mechanism of platelet aggregation under physiological flow conditions using an in vitro flow-based platelet aggregation assay and an in vivo rat thrombosis model. Our studies demonstrate an unexpected complexity to the platelet aggregation process in which platelets in flowing blood continuously tether, translocate, and/or detach from the luminal surface of a growing platelet thrombus at both arterial and venous shear rates. Studies of platelets congenitally deficient in von Willebrand factor (vWf) or integrin αIIbβ3 demonstrated a key role for platelet vWf in mediating platelet tethering and translocation, whereas integrin αIIbβ3 mediated cell arrest. Platelet aggregation under flow appears to be a multistep process involving: (a) exposure of vWf on the surface of immobilized platelets; (b) a reversible phase of platelet aggregation mediated by the binding of GPIbα on the surface of free-flowing platelets to vWf on the surface of immobilized platelets; and (c) an irreversible phase of aggregation dependent on integrin αIIbβ3. Studies of platelet thrombus formation in vivo demonstrate that this multistep adhesion mechanism is indispensable for platelet aggregation in arterioles and also appears to promote platelet aggregate formation in venules. Together, our studies demonstrate an important role for platelet vWf in initiating the platelet aggregation process under flow and challenge the currently accepted view that the vWf-GPIbα interaction is exclusively involved in initiating platelet aggregation at elevated shear rates.
A revised model of platelet aggregation
Lanza FPenultimo
Membro del Collaboration Group
;
2000
Abstract
In this study we have examined the mechanism of platelet aggregation under physiological flow conditions using an in vitro flow-based platelet aggregation assay and an in vivo rat thrombosis model. Our studies demonstrate an unexpected complexity to the platelet aggregation process in which platelets in flowing blood continuously tether, translocate, and/or detach from the luminal surface of a growing platelet thrombus at both arterial and venous shear rates. Studies of platelets congenitally deficient in von Willebrand factor (vWf) or integrin αIIbβ3 demonstrated a key role for platelet vWf in mediating platelet tethering and translocation, whereas integrin αIIbβ3 mediated cell arrest. Platelet aggregation under flow appears to be a multistep process involving: (a) exposure of vWf on the surface of immobilized platelets; (b) a reversible phase of platelet aggregation mediated by the binding of GPIbα on the surface of free-flowing platelets to vWf on the surface of immobilized platelets; and (c) an irreversible phase of aggregation dependent on integrin αIIbβ3. Studies of platelet thrombus formation in vivo demonstrate that this multistep adhesion mechanism is indispensable for platelet aggregation in arterioles and also appears to promote platelet aggregate formation in venules. Together, our studies demonstrate an important role for platelet vWf in initiating the platelet aggregation process under flow and challenge the currently accepted view that the vWf-GPIbα interaction is exclusively involved in initiating platelet aggregation at elevated shear rates.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.