Application of wastewater to agricultural soils not only enhances economic benefits but is also considered as a safe disposal option by the administrators. Worldwide, peri-urban horticulture is a common practice for growing vegetables. When agricultural soils are irrigated with wastewater, numerous potentially toxic elements (PTEs) contained therein are bioaccumulated and pose health risks. The presented study aimed to reveal the PTEs, i.e., copper (Cu), cadmium (Cd), nickel (Ni) and lead (Pb) concentration in the agricultural soils irrigated with wastewater for longer times. Zeolite, a natural mineral was used to immobilize these in contaminated soils to reduce its availability to brinjal (Solanum melongena L.). During a pot study, zeolite was applied at four different levels, i.e., 0.25, 0.50, 1.00 and 2.00% in contaminated soil, keeping one control. The results revealed that growth as well as biochemical and physiological characters were found best with treatment receiving zeolite at 2.00%. In edible parts (fruit), PTE contents were found lowest in the same treatment. Relative to the control, ~121, 87, 120 and 140% less DTPA-extracted Cu, Cd, Ni and Pb in soil was found with this treatment. Based on the results, it was revealed that zeolite effectively immobilized Cu, Cd, Ni and Pb in the soil. Although all the applied levels of zeolite had positive potential to immobilize PTEs in wastewater-contaminated soil, zeolite applied at 2.00% proved most effective.

Zeolite-Assisted Immobilization and Health Risks of Potentially Toxic Elements in Wastewater-Irrigated Soil under Brinjal (Solanum melongena) Cultivation

Radicetti, Emanuele
Penultimo
;
2022

Abstract

Application of wastewater to agricultural soils not only enhances economic benefits but is also considered as a safe disposal option by the administrators. Worldwide, peri-urban horticulture is a common practice for growing vegetables. When agricultural soils are irrigated with wastewater, numerous potentially toxic elements (PTEs) contained therein are bioaccumulated and pose health risks. The presented study aimed to reveal the PTEs, i.e., copper (Cu), cadmium (Cd), nickel (Ni) and lead (Pb) concentration in the agricultural soils irrigated with wastewater for longer times. Zeolite, a natural mineral was used to immobilize these in contaminated soils to reduce its availability to brinjal (Solanum melongena L.). During a pot study, zeolite was applied at four different levels, i.e., 0.25, 0.50, 1.00 and 2.00% in contaminated soil, keeping one control. The results revealed that growth as well as biochemical and physiological characters were found best with treatment receiving zeolite at 2.00%. In edible parts (fruit), PTE contents were found lowest in the same treatment. Relative to the control, ~121, 87, 120 and 140% less DTPA-extracted Cu, Cd, Ni and Pb in soil was found with this treatment. Based on the results, it was revealed that zeolite effectively immobilized Cu, Cd, Ni and Pb in the soil. Although all the applied levels of zeolite had positive potential to immobilize PTEs in wastewater-contaminated soil, zeolite applied at 2.00% proved most effective.
2022
Farooqi, Zia Ur Rahman; Ahmad, Iftikhar; Abdul Qadir, Ayesha Abdul; Murtaza, Ghulam; Rafiq, Sana; Jamal, Aftab; Zeeshan, Nukshab; Murtaza, Behzad; Javed, Wasim; Radicetti, Emanuele; Mancinelli, Roberto
File in questo prodotto:
File Dimensione Formato  
2022 - Zeolite-assistes immobilization and health risk of toxic element in wasterwater in brinja.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 438.94 kB
Formato Adobe PDF
438.94 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2495295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact