In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed.

Rhenium Radioisotopes for Medicine, a Focus on Production and Applications

Licia Uccelli
Primo
;
Petra Martini
Secondo
;
Luca Urso;Teresa Ghirardi;Lorenza Marvelli;Corrado Cittanti;Aldo Carnevale;Melchiore Giganti;Mirco Bartolomei
Penultimo
;
Alessandra Boschi
Ultimo
2022

Abstract

In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via 185Re(n,γ)186Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic 188W/188Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the 99Mo/99mTc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of 186/188Re-radiopharmaceuticals is, in particular, are discussed.
2022
Uccelli, Licia; Martini, Petra; Urso, Luca; Ghirardi, Teresa; Marvelli, Lorenza; Cittanti, Corrado; Carnevale, Aldo; Giganti, Melchiore; Bartolomei, M...espandi
File in questo prodotto:
File Dimensione Formato  
molecules-27-05283-v2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2492873
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact