Assigning individuals to their source populations is crucial for conservation research, especially for endangered species threatened by illegal trade and translocations. Genetic assignment can be achieved with different types of molecular markers, but technical advantages and cost saving are recently promoting the shift from short tandem repeats (STRs) to single nucleotide polymorphisms (SNPs). Here, we designed, developed, and tested a small panel of SNPs for cost-effective geographic assignment of individuals with unknown origin of the endangered Mediterranean tortoise Testudo hermanni. We started by performing a ddRAD-seq experiment on 70 wild individuals of T. hermanni from 38 locations. Results obtained using 3,182 SNPs are comparable to those previously obtained using STR markers in terms of genetic structure and power to identify the macro-area of origin. However, our SNPs revealed further insights into the substructure in Western populations, especially in Southern Italy. A small panel of highly informative SNPs was then selected and tested by genotyping 190 individuals using the KASP genotyping chemistry. All the samples from wild populations of known geographic origin were genetically re-assigned with high accuracy to the original population. This reduced SNPs panel represents an efficient molecular tool that enables individuals to be genotyped at low cost (less than €15 per sample) for geographical assignment and identification of hybrids. This information is crucial for the management in-situ of confiscated animals and their possible re-allocation in the wild. Our methodological pipeline can easily be extended to other species.

From STRs to SNPs via ddRAD-seq: geographic assignment of confiscated tortoises at reduced costs

Roberto Biello
Primo
;
Silvia Fuselli;Giulia Fabbri;Emiliano Trucchi;Daniele Canestrelli
Penultimo
;
Giorgio Bertorelle
Ultimo
2022

Abstract

Assigning individuals to their source populations is crucial for conservation research, especially for endangered species threatened by illegal trade and translocations. Genetic assignment can be achieved with different types of molecular markers, but technical advantages and cost saving are recently promoting the shift from short tandem repeats (STRs) to single nucleotide polymorphisms (SNPs). Here, we designed, developed, and tested a small panel of SNPs for cost-effective geographic assignment of individuals with unknown origin of the endangered Mediterranean tortoise Testudo hermanni. We started by performing a ddRAD-seq experiment on 70 wild individuals of T. hermanni from 38 locations. Results obtained using 3,182 SNPs are comparable to those previously obtained using STR markers in terms of genetic structure and power to identify the macro-area of origin. However, our SNPs revealed further insights into the substructure in Western populations, especially in Southern Italy. A small panel of highly informative SNPs was then selected and tested by genotyping 190 individuals using the KASP genotyping chemistry. All the samples from wild populations of known geographic origin were genetically re-assigned with high accuracy to the original population. This reduced SNPs panel represents an efficient molecular tool that enables individuals to be genotyped at low cost (less than €15 per sample) for geographical assignment and identification of hybrids. This information is crucial for the management in-situ of confiscated animals and their possible re-allocation in the wild. Our methodological pipeline can easily be extended to other species.
2022
Biello, Roberto; Zampiglia, Mauro; Fuselli, Silvia; Fabbri, Giulia; Bisconti, Roberta; Chiocchio, Andrea; Mazzotti, Stefano; Trucchi, Emiliano; Canestrelli, Daniele; Bertorelle, Giorgio
File in questo prodotto:
File Dimensione Formato  
Evolutionary Applications - 2022 - Biello .pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2491353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact