When quickly reviewing engineering and industrial fields, one often discovers that a large number of metallic components and structures are subjected, in service, to random or variable amplitude loadings. The examples are many: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so on. Just like constant amplitude loadings, random and variable amplitude loadings can make fatigue cracks initiate and propagate, even up to catastrophic failures. Engineers faced with the problem of estimating the structural integrity and the fatigue strength of metallic structures, or their propensity to fracture, usually make use of theoretical or experimental approaches, or both. Counting methods (e.g., rainflow) provide information on the fatigue cycles in the load, whereas damage accumulation laws (as the celebrated Palmgren–Miner linear rule) establish how to sum up the damage of each counted cycle. In structural integrity, this is named as the “time-domain” approach. Over recent years, the “frequency-domain” approach has also received increasing and widespread use, especially with random loadings; this approach estimates fatigue life based on load statistical properties represented, in the frequency domain, by a power spectral density. Neither of the previous approaches, however, can do without the support of experimental laboratory testing, which provides a means to collect material strength data under specific loading conditions, or to verify preliminary estimations. The purpose of this Special Issue is to collect articles aimed at providing an up-todate overview of approaches and case studies—theoretical, numerical or experimental—on several topics in the field of fracture, fatigue strength, and the structural integrity of metallic components subjected to random or variable amplitude loadings.
Fracture, Fatigue, and Structural Integrity of Metallic Materials and Components Undergoing Random or Variable Amplitude Loadings
Benasciutti D.
Primo
;
2022
Abstract
When quickly reviewing engineering and industrial fields, one often discovers that a large number of metallic components and structures are subjected, in service, to random or variable amplitude loadings. The examples are many: vehicles subjected to loadings and vibrations caused by road irregularity and engine, structures exposed to wind, off-shore platforms undergoing wave-loadings, and so on. Just like constant amplitude loadings, random and variable amplitude loadings can make fatigue cracks initiate and propagate, even up to catastrophic failures. Engineers faced with the problem of estimating the structural integrity and the fatigue strength of metallic structures, or their propensity to fracture, usually make use of theoretical or experimental approaches, or both. Counting methods (e.g., rainflow) provide information on the fatigue cycles in the load, whereas damage accumulation laws (as the celebrated Palmgren–Miner linear rule) establish how to sum up the damage of each counted cycle. In structural integrity, this is named as the “time-domain” approach. Over recent years, the “frequency-domain” approach has also received increasing and widespread use, especially with random loadings; this approach estimates fatigue life based on load statistical properties represented, in the frequency domain, by a power spectral density. Neither of the previous approaches, however, can do without the support of experimental laboratory testing, which provides a means to collect material strength data under specific loading conditions, or to verify preliminary estimations. The purpose of this Special Issue is to collect articles aimed at providing an up-todate overview of approaches and case studies—theoretical, numerical or experimental—on several topics in the field of fracture, fatigue strength, and the structural integrity of metallic components subjected to random or variable amplitude loadings.File | Dimensione | Formato | |
---|---|---|---|
2022_BENA WHITTAKER DIRLIK_Random loadings_Editorial_METALS_2022.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
176.43 kB
Formato
Adobe PDF
|
176.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.