A novel zwitterionic-teicoplanin chiral stationary phase (CSP), based on superficially porous particles (SPPs) of 2.7 µm particle diameter and 160 Å pore size, has been prepared and evaluated towards the enantioseparation of important classes of compounds, including chiral drugs, pesticides, and N-derivatized amino acids. The comparison with two analogous CSPs prepared on SPPs with 2.7 and 2.0 µm particle diameter and 90 Å pore size has revealed that the use of large-pore particles allows to dramatically improve both the enantioselectivity and the resolution-per-analysis-time, at the point that the column prepared with the new CSP outperformed the one packed with the finest particles. On the novel wide-pore CSP, the separation of fifteen racemates of pratical importance was significantly improved in terms of both enantioselectivity and resolution-per-analysis time-compared to the CSPs based on SPPs with smaller pores (90 Å). Such a CSP would be suitable for very fast enantioseparations allowing the saving of solvent for greener high-efficiency/high-throughput applications.

Boosting the enantioresolution of zwitterionic-teicoplanin chiral stationary phases by moving to wide-pore core-shell particles

Martina Catani
Secondo
;
Simona Felletti;Chiara De Luca;Alberto Cavazzini
Penultimo
;
2022

Abstract

A novel zwitterionic-teicoplanin chiral stationary phase (CSP), based on superficially porous particles (SPPs) of 2.7 µm particle diameter and 160 Å pore size, has been prepared and evaluated towards the enantioseparation of important classes of compounds, including chiral drugs, pesticides, and N-derivatized amino acids. The comparison with two analogous CSPs prepared on SPPs with 2.7 and 2.0 µm particle diameter and 90 Å pore size has revealed that the use of large-pore particles allows to dramatically improve both the enantioselectivity and the resolution-per-analysis-time, at the point that the column prepared with the new CSP outperformed the one packed with the finest particles. On the novel wide-pore CSP, the separation of fifteen racemates of pratical importance was significantly improved in terms of both enantioselectivity and resolution-per-analysis time-compared to the CSPs based on SPPs with smaller pores (90 Å). Such a CSP would be suitable for very fast enantioseparations allowing the saving of solvent for greener high-efficiency/high-throughput applications.
2022
Ismail, Omar H.; Catani, Martina; Mazzoccanti, Giulia; Felletti, Simona; Manetto, Simone; DE LUCA, Chiara; Ye, Michael; Cavazzini, Alberto; Gasparrini, Francesco
File in questo prodotto:
File Dimensione Formato  
Boosting enantioresolution teicoplanin wide pore-JCA_2022.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2491218
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact