The density, colour and texture, plus mineral and chemical features of 18 ceramic-like CDW samples from the Abruzzo region (Central Italy) were characterised. The concretes, natural stones, tiles, roof-tiles, bricks and perforated bricks are either aphanitic to porphyric. Concretes and natural stones are grey to white and tend to be > 2.0 g/cm3; the masonries are brown to reddish and close to < 2.0 g/cm3. Concrete and natural stone are rich or even exclusively made up of calcite, with high amounts of CaO (>40 wt%) and LOI (volatiles, CO2 + H2O). The masonries are instead calcite-, CaO- (<25 wt%) and LOI-poor (<8 wt%) but enriched in SiO2 (45 to 70 wt%) stabilised as quartz and/or cristobalite, with significant amount of Al2O3 (12 to 20 wt%). S and Cl contents are similar among concrete, bricks and perforated bricks. The petrography of CDW concretes is similar among geographical areas with abundance of limestones used as aggregates. However, in limestone-poor areas CDW are SiO2- and Al2O3-rich, reflecting the prevalent use of masonry and/or silicate-rich construction materials, implying that each geographical area is characterised by peculiar CDW composition. Therefore, the knowledge of mesoscopic, physical and petrographic aspects has to be known for planning adequate sorting methods, promoting upcycling reusing applications. Some of the studied CDW samples are susceptible to release relative high Cr and As content.

Petrography of construction and demolition waste (CDW) from Abruzzo region (Central Italy)

Bianchini G.;
2022

Abstract

The density, colour and texture, plus mineral and chemical features of 18 ceramic-like CDW samples from the Abruzzo region (Central Italy) were characterised. The concretes, natural stones, tiles, roof-tiles, bricks and perforated bricks are either aphanitic to porphyric. Concretes and natural stones are grey to white and tend to be > 2.0 g/cm3; the masonries are brown to reddish and close to < 2.0 g/cm3. Concrete and natural stone are rich or even exclusively made up of calcite, with high amounts of CaO (>40 wt%) and LOI (volatiles, CO2 + H2O). The masonries are instead calcite-, CaO- (<25 wt%) and LOI-poor (<8 wt%) but enriched in SiO2 (45 to 70 wt%) stabilised as quartz and/or cristobalite, with significant amount of Al2O3 (12 to 20 wt%). S and Cl contents are similar among concrete, bricks and perforated bricks. The petrography of CDW concretes is similar among geographical areas with abundance of limestones used as aggregates. However, in limestone-poor areas CDW are SiO2- and Al2O3-rich, reflecting the prevalent use of masonry and/or silicate-rich construction materials, implying that each geographical area is characterised by peculiar CDW composition. Therefore, the knowledge of mesoscopic, physical and petrographic aspects has to be known for planning adequate sorting methods, promoting upcycling reusing applications. Some of the studied CDW samples are susceptible to release relative high Cr and As content.
2022
Galderisi, A.; Iezzi, G.; Bianchini, G.; Parise, E.; de Brito, J.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0956053X21005687-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.36 MB
Formato Adobe PDF
6.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Galderisi+et+al+WM-21-51R1-clean+new+version-13-09-2021.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2490797
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact