Radiopharmaceuticals, namely drugs having as core a radiation emitting nuclide, are one of the fundamental tools of nuclear medicine, being employed for both therapeutic and diagnostic procedures. Research in such field involves both the development of new ligands for specific cellular targets and the discovery of the potential medical uses of innovative radionuclides. However, the widespread of novel medical nuclides is often limited by the lack of a suitable production technique, able to ensure a radionuclidic purity or a specific activity acceptable for the labelling of a pharmaceutical compound. Thus, along with the conventional production routines, mostly accelerator – based or reactor – based, new approaches are emerging, such as MEDICIS at CERN and ISOLPHARM at INFN-LNL, both based on the use of electromagnetic mass separators to increase the achievable radionuclidic purity. The main focus of this thesis is ISOLPHARM (ISOL technique for radioPHARMaceuticals), a project devoted to the discovery and development of high purity radiopharmaceuticals exploiting the radionuclides producible with the future SPES (Selective Production of Exotic Species) ISOL (Isotope Separation On-Line) facility at INFN-LNL. According the ISOLPHARM approach, a proton beam (up to 70 MeV), extracted from SPES cyclotron will directly impinge a primary target, inducing nuclear reactions. The so-produced species are then released from the target thanks to its high working temperature (2000°C), ionized with suitable ion sources, extracted into a beam and accelerated. Finally, thanks to the use of an electromagnetic mass separator, only the desired isobars are deposed on a secondary target. After the dissolution the latter, a chemical purification step allows to recover only the desired nuclides, thus without any isotopic contaminants. Such production method has the capability to produce a wide set of intrinsically carrier-free nuclides with high flexibility, since different radioisotopes can be extracted separately from the same production target by simply adjusting the settings of the electromagnetic separator. In particular, ISOLPHARM could have the capability to provide lesser studied nuclides, for which there is a limited availability with conventional techniques, , such as 111Ag, 43Sc, 47Sc, 67Cu, 149Tb, 152Tb and 155Tb, once a suitable production target is identified. In the presented work Uranium Carbide (UCx) is proposed as production target for 111Ag, Zirconium Germanide (ZrGe) for 67Cu, along with 64Cu, Titanium Carbide (TiC) or Titanium Boride (TiB2) for 43Sc and 47Sc, and Gadolinium Boride (GdB4) for 149Tb, 152Tb and 155Tb. The feasibility of the production of the desired nuclides was evaluated by means of the Monte Carlo codes FLUKA and Geant4, and promising yields were calculated. Furthermore, provided the lack of experimental measurements on the natGe(p,X)64Cu and natGe(p,X)67Cu reactions, numerical nuclear cross section studies were performed. In addition, the feasibility study included also the performance of tests with stable counterparts of the desired nuclides, aimed to investigate the capability of SPES technologies to ionize, accelerate and selectively collect single isotopes of the elements of interest. Thus, at SPES offline laboratories it was possible to successfully ionize and collect stable beams of Silver and Copper, and the efficiencies of such processes were measured, and preliminary ionization tests with Scandium and Terbium were performed. Finally, a complex model with Geant4 was developed with the aim to simulate the release of the produced species and their migration towards the ion source, processes dominated by the effusion and diffusion phenomena, and preliminary run were performed. However, being such model computing intensive, an adequate IT (Information Technology) infrastructure was developed in CloudVeneto, a Cloud service of the IaaS (Infrastructure as a Service) family owned by INFN and UNIPD.

I radiofarmaci, ossia formulazioni mediche contenenti un radionuclide, sono uno degli strumenti fondamentali della medicina nucleare, impiegati in applicazioni sia diagnostiche, sia terapeutiche. La ricerca in tale campo ha come obiettivo da un lato lo sviluppo di nuovi ligandi per target cellulari specifici, dall’altro la scoperta del possibile uso in medicina di radionuclidi innovativi. Tuttavia la diffusione di tali nuovi isotopi è spesso limitata dalla mancanza di un’adeguata tecnica di produzione, in grado di garantire alte purezza radionuclidica e attività specifica. Pertanto, in aggiunta alle procedure convenzionali, per lo più basate su acceleratori o reattori, nuovi approcci stanno emergendo, come quello proposto al CERN con la facilty MEDICIS o il progetto ISOLPHARM presso INFN-LNL, entrambi basati sull’uso di separatori di massa elettromagnetici per aumentare la purezza radionuclidica ottenibile. Questo lavoro di tesi è focalizzato su ISOLPHARM (ISOL technique for radioPHARMaceuticals), progetto che ha come obiettivo lo sviluppo di nuovi radiofarmaci, estremamente puri, sfruttando i nuclidi producibili a SPES, (Selective Production of Exotic Species), una facility ISOL (Isotope Separation On-Line) in costruzione presso INFN-LNL. Ad ISOLPHARM, un fascio di protoni con energie fino a 70 MeV, estratto dal ciclotrone di SPES, viene inviato su un target solido, inducendo reazioni nucleari. Si producono così un set di radionuclidi, che sono poi rilasciati, grazie alle elevate temperature del target (2000°C), ionizzati, estratti in un fascio e accelerati. Infine, mediante l’utilizzo di un separatore di massa elettromagnetico, solamente gli isobari desiderati sono raccolti in un target secondario, da cui si estraggono esclusivamente i nuclidi di interesse con un processo chimico. Questo metodo avrà la capacità di produrre una grande varietà di radionuclidi intrinsecamente carrier-free in modo flessibile, anche dallo stesso target di produzione, variando semplicemente le impostazioni del separatore di massa. In particolare, il metodo ISOLPHARM potrebbe fornire nuclidi poco studiati o di limitata disponibilità come 111Ag, 43Sc, 47Sc, 67Cu, 149Tb, 152Tb e 155Tb, dopo aver identificato un opportuno target di produzione. In questo lavoro si propone il Carburo di Uranio (UCx) come target per la produzione di 111Ag, il Germaniuro di Zirconio (ZrGe) per il 67Cu, assieme al 64Cu, il Carburo di Titanio (TiC) o il Boruro di Titanio (TiB2) per 43Sc and 47Sc, e il Boruro di Gadolinio (GdB4) per 149Tb, 152Tb and 155Tb. La fattibilità della produzione dei nuclidi di interesse è stata valutata per mezzo di simulazioni con i codici Monte Carlo FLUKA e Geant4, ottenendo rese promettenti. Inoltre, verificata la mancanza di misure sperimentali per le reazioni natGe(p,X)64Cu e natGe(p,X)67Cu, le sezioni d’urto in esame sono state studiate numericamente. In aggiunta, sono stati eseguiti test con le controparti stabili dei nuclidi di interesse, volti a verificare l’effettiva possibilità a SPES di ionizzare, estrarre e collezionare selettivamente singoli isotopi degli elementi di interesse. Presso i laboratori offline di SPES, sono stati quindi ionizzati e raccolti fasci stabili di Ag e Cu, e le efficienze coinvolti in tali processi sono state misurate, e test preliminari sulla ionizzazione dello Sc e del Tb sono stati eseguiti. Infine, un complesso modello Geant4 è stato sviluppato con l’obiettivo di simulare il rilascio delle specie prodotte nel target e il loro spostamento verso la sorgente di ionizzazione, processi regolati dai meccanismi di diffusione ed effusione, e alcuni run preliminari sono stati eseguiti. Tuttavia, trattandosi di simulazioni computing-intensive, si è reso necessario lo sviluppo di un’adeguata infrastruttura di IT (Information Technology), basata su CloudVeneto, un servizio Cloud della famiglia IaaS (Infrastructure as a Service) di proprietà di INFN e UNIPD.

Sviluppo di bersagli per la produzione di radionuclidi di interesse medico secondo la tecnica ISOL

BALLAN, Michele
2019

Abstract

Radiopharmaceuticals, namely drugs having as core a radiation emitting nuclide, are one of the fundamental tools of nuclear medicine, being employed for both therapeutic and diagnostic procedures. Research in such field involves both the development of new ligands for specific cellular targets and the discovery of the potential medical uses of innovative radionuclides. However, the widespread of novel medical nuclides is often limited by the lack of a suitable production technique, able to ensure a radionuclidic purity or a specific activity acceptable for the labelling of a pharmaceutical compound. Thus, along with the conventional production routines, mostly accelerator – based or reactor – based, new approaches are emerging, such as MEDICIS at CERN and ISOLPHARM at INFN-LNL, both based on the use of electromagnetic mass separators to increase the achievable radionuclidic purity. The main focus of this thesis is ISOLPHARM (ISOL technique for radioPHARMaceuticals), a project devoted to the discovery and development of high purity radiopharmaceuticals exploiting the radionuclides producible with the future SPES (Selective Production of Exotic Species) ISOL (Isotope Separation On-Line) facility at INFN-LNL. According the ISOLPHARM approach, a proton beam (up to 70 MeV), extracted from SPES cyclotron will directly impinge a primary target, inducing nuclear reactions. The so-produced species are then released from the target thanks to its high working temperature (2000°C), ionized with suitable ion sources, extracted into a beam and accelerated. Finally, thanks to the use of an electromagnetic mass separator, only the desired isobars are deposed on a secondary target. After the dissolution the latter, a chemical purification step allows to recover only the desired nuclides, thus without any isotopic contaminants. Such production method has the capability to produce a wide set of intrinsically carrier-free nuclides with high flexibility, since different radioisotopes can be extracted separately from the same production target by simply adjusting the settings of the electromagnetic separator. In particular, ISOLPHARM could have the capability to provide lesser studied nuclides, for which there is a limited availability with conventional techniques, , such as 111Ag, 43Sc, 47Sc, 67Cu, 149Tb, 152Tb and 155Tb, once a suitable production target is identified. In the presented work Uranium Carbide (UCx) is proposed as production target for 111Ag, Zirconium Germanide (ZrGe) for 67Cu, along with 64Cu, Titanium Carbide (TiC) or Titanium Boride (TiB2) for 43Sc and 47Sc, and Gadolinium Boride (GdB4) for 149Tb, 152Tb and 155Tb. The feasibility of the production of the desired nuclides was evaluated by means of the Monte Carlo codes FLUKA and Geant4, and promising yields were calculated. Furthermore, provided the lack of experimental measurements on the natGe(p,X)64Cu and natGe(p,X)67Cu reactions, numerical nuclear cross section studies were performed. In addition, the feasibility study included also the performance of tests with stable counterparts of the desired nuclides, aimed to investigate the capability of SPES technologies to ionize, accelerate and selectively collect single isotopes of the elements of interest. Thus, at SPES offline laboratories it was possible to successfully ionize and collect stable beams of Silver and Copper, and the efficiencies of such processes were measured, and preliminary ionization tests with Scandium and Terbium were performed. Finally, a complex model with Geant4 was developed with the aim to simulate the release of the produced species and their migration towards the ion source, processes dominated by the effusion and diffusion phenomena, and preliminary run were performed. However, being such model computing intensive, an adequate IT (Information Technology) infrastructure was developed in CloudVeneto, a Cloud service of the IaaS (Infrastructure as a Service) family owned by INFN and UNIPD.
DUATTI, Adriano
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_MBallan-pagine-121-251.pdf

accesso aperto

Descrizione: PhD_Thesis_MBallan-pagine-121-251
Tipologia: Tesi di dottorato
Dimensione 35.96 MB
Formato Adobe PDF
35.96 MB Adobe PDF Visualizza/Apri
PhD_Thesis_MBallan-pagine-1-120.pdf

accesso aperto

Descrizione: PhD_Thesis_MBallan-pagine-1-120
Tipologia: Tesi di dottorato
Dimensione 19.82 MB
Formato Adobe PDF
19.82 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2488258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact