Nowadays, water distribution networks (WDNs) are generally designed and managed both from a technical and a scientific standpoint under the assumption of steady-state conditions whereas the dynamic behaviour of these systems still remains a less investigated topic. Water distribution systems are actually subjected to unsteady flow phenomena and, while most of the efforts of analysis and modelling under unsteady state conditions have so far been directed at transmission mains, the awareness that water distribution networks are continuously subjected to transients, rarely reaching steady-state conditions, is growing. The transients that occur in WDN can be generated by different causes, which can be classified into two main categories: (i) fast manoeuvres on control and regulating devices and on pumping systems which produce transients of significant magnitude and less frequent in time and (ii) adjustments of control valves, inverters but also users’ activity which tend to produce pressure variations of limited magnitude but very frequent in time. Consequently, in WDNs two types of effects of pressure transients should be considered, which can cause immediately evident damage or deterioration that tends to aggravate over time, respectively. Notwithstanding WDNs are continuously subjected to transients of different nature, the moderate number of studies available in the literature on the study and modelling of these systems under unsteady flow conditions mainly focuses on the effect of transients of the first type. This Thesis proposes an innovative approach aimed at studying and modelling the dynamic behaviour of WDNs subjected to transients induced by the users’ activity, starting from the generation of transients at the level of a single house up to the main distribution network. In greater detail, starting from the data collected through two measurement campaigns, the dynamic behaviour of a water service line and a main WDN subject to user activity is characterised. The first measurement campaign was carried out with reference to a real service line, the first element along with the plumbing system affected by pressure variations generated by users’ activity, subjected to manoeuvres generated within the user served and manoeuvres generated by nearby users and in the network. The second campaign of measurements has been conducted, always through high-frequency monitoring of pressure along with the monitoring of user consumption, on a real water distribution network subjected exclusively to users’ activity. From the two measurement campaigns the users’ activity has emerged to have an impact on the system, both at the level of the service lines, subjecting these elements to pressure variations that can be also very significant, and at the level of the main network, generating stresses in the network of limited magnitude but continuous in time, and variable from the different areas of the network and over the day. Starting from the experimental data collected during the second measurement campaign, a stochastic approach is then proposed, which allows characterising the dynamic behaviour of the network subjected to user activity through numerical modelling aimed at the realistic characterisation of the pressure trend in the network and the identification of the sections most stressed by pressure fluctuations. By applying the stochastic approach of unsteady flow modelling of WDNs presented, the effect of topological structure on the dynamic behaviour of a real hydraulic system subjected to users’ activity is analysed. In greater detail, the relationship between some connectivity metrics and the dynamic response of the network is studied in order to identify a rapid assessment tool that can support in the macroscopic characterisation of the dynamic behaviour of systems as their topological structure changes.
Le reti di distribuzione idrica (RDI) sono oggigiorno generalmente progettate e gestite sia da un punto di vista tecnico che scientifico assumendone un funzionamento in condizioni stazionarie mentre il comportamento dinamico di tali sistemi rimane ancora un campo meno investigato. D’altra parte, i sistemi acquedottistici sono soggetti a fenomeni di moto vario e, mentre gran parte degli sforzi di analisi e modellazione in condizioni non stazionarie è stata finora rivolta ai sistemi di adduzione, sta crescendo la consapevolezza che anche le reti di distribuzione idrica siano continuamente soggette a transitori e raggiungano raramente stati stazionari. I transitori che si instaurano nelle RDI possono insorgere per cause diverse, classificabili in due gruppi principali: (i) le manovre rapide su organi di controllo e di regolazione e su sistemi di pompaggio che producono transitori di entità elevata e meno frequenti nel tempo e (ii) gli aggiustamenti delle valvole di regolazione, degli inverter ma anche l’attività dell’utenza che tendono a produrre variazioni di pressione di entità limitata ma molto frequenti. Nei sistemi di distribuzione devono perciò essere presi in considerazione due tipi di effetti dei transitori di pressione che possono determinare sia danni immediatamente evidenti sia deterioramenti che tendono ad aggravarsi nel tempo. Nonostante le RDI siano quindi continuamente soggette a transitori di diversa origine, il numero limitato di lavori in letteratura disponibili sullo studio e la modellazione in moto vario di questi sistemi si concentra principalmente sull’effetto di transitori del primo tipo. Questa Tesi vuole proporre un approccio innovativo finalizzato allo studio e alla modellazione del comportamento dinamico delle RDI soggette a transitori indotti dalla domanda idrica, a partire dalla generazione dei transitori a livello di singola abitazione fino alla rete principale di distribuzione. In particolare, partendo dai dati raccolti mediante due campagne di misure è caratterizzato il comportamento dinamico di un allaccio idrico e di una rete principale di distribuzione idrica soggetti all’attività dell’utenza. La prima campagna di misure si è svolta con riferimento ad un allaccio idrico reale, primo elemento insieme all’impianto idrico privato ad essere interessato dall’attività dell’utenza, sottoposto a manovre generate internamente all’utenza servita dall’allaccio e manovre generate da utenze vicine e in rete. La seconda campagna di misure è stata condotta, sempre con un monitoraggio ad alta frequenza della pressione affiancato da un monitoraggio dei consumi degli utenti, su una rete di distribuzione idrica reale sottoposta esclusivamente all’attività dell’utenza idrica. Dalle due campagne di misure è emerso come anche l’attività dell’utenza può avere un impatto sul sistema, sia a livello di allacci idrici, sottoponendo tali elementi a variazioni di pressione che possono essere anche molto significative, sia a livello di rete principale, generando sollecitazioni in rete di modesta entità ma continue nel tempo, e variabili da zona a zona della rete e nell’arco della giornata. A partire dai dati sperimentali raccolti durante la seconda campagna di misure, è proposto poi un approccio stocastico che permette di caratterizzare il comportamento dinamico della rete soggetta ad attività dell’utenza attraverso modellazione numerica finalizzato alla caratterizzazione realistica dell’andamento delle pressioni in rete e l’individuazione delle sezioni più sollecitate dalle fluttuazioni di pressione. È infine studiata la relazione tra alcuni indicatori di connettività e la risposta dinamica di una RDI reale soggetta all’attività dell’utenza con lo scopo di identificare un possibile strumento di rapida valutazione che possa supportare nella caratterizzazione macroscopica del comportamento dinamico dei sistemi al variare della loro struttura topologica.
Il ruolo dell'utenza nel comportamento dinamico delle reti di distribuzione idrica
MARSILI, VALENTINA
2022
Abstract
Nowadays, water distribution networks (WDNs) are generally designed and managed both from a technical and a scientific standpoint under the assumption of steady-state conditions whereas the dynamic behaviour of these systems still remains a less investigated topic. Water distribution systems are actually subjected to unsteady flow phenomena and, while most of the efforts of analysis and modelling under unsteady state conditions have so far been directed at transmission mains, the awareness that water distribution networks are continuously subjected to transients, rarely reaching steady-state conditions, is growing. The transients that occur in WDN can be generated by different causes, which can be classified into two main categories: (i) fast manoeuvres on control and regulating devices and on pumping systems which produce transients of significant magnitude and less frequent in time and (ii) adjustments of control valves, inverters but also users’ activity which tend to produce pressure variations of limited magnitude but very frequent in time. Consequently, in WDNs two types of effects of pressure transients should be considered, which can cause immediately evident damage or deterioration that tends to aggravate over time, respectively. Notwithstanding WDNs are continuously subjected to transients of different nature, the moderate number of studies available in the literature on the study and modelling of these systems under unsteady flow conditions mainly focuses on the effect of transients of the first type. This Thesis proposes an innovative approach aimed at studying and modelling the dynamic behaviour of WDNs subjected to transients induced by the users’ activity, starting from the generation of transients at the level of a single house up to the main distribution network. In greater detail, starting from the data collected through two measurement campaigns, the dynamic behaviour of a water service line and a main WDN subject to user activity is characterised. The first measurement campaign was carried out with reference to a real service line, the first element along with the plumbing system affected by pressure variations generated by users’ activity, subjected to manoeuvres generated within the user served and manoeuvres generated by nearby users and in the network. The second campaign of measurements has been conducted, always through high-frequency monitoring of pressure along with the monitoring of user consumption, on a real water distribution network subjected exclusively to users’ activity. From the two measurement campaigns the users’ activity has emerged to have an impact on the system, both at the level of the service lines, subjecting these elements to pressure variations that can be also very significant, and at the level of the main network, generating stresses in the network of limited magnitude but continuous in time, and variable from the different areas of the network and over the day. Starting from the experimental data collected during the second measurement campaign, a stochastic approach is then proposed, which allows characterising the dynamic behaviour of the network subjected to user activity through numerical modelling aimed at the realistic characterisation of the pressure trend in the network and the identification of the sections most stressed by pressure fluctuations. By applying the stochastic approach of unsteady flow modelling of WDNs presented, the effect of topological structure on the dynamic behaviour of a real hydraulic system subjected to users’ activity is analysed. In greater detail, the relationship between some connectivity metrics and the dynamic response of the network is studied in order to identify a rapid assessment tool that can support in the macroscopic characterisation of the dynamic behaviour of systems as their topological structure changes.File | Dimensione | Formato | |
---|---|---|---|
PhDThesis_Marsili_Il ruolo dell'utenza nel comportamento dinamico delle reti di distribuzione idrica.pdf
accesso aperto
Descrizione: Il ruolo dell'utenza nel comportamento dinamico delle reti di distribuzione idrica
Tipologia:
Tesi di dottorato
Dimensione
10.73 MB
Formato
Adobe PDF
|
10.73 MB | Adobe PDF | Visualizza/Apri |
Abstract_IT_EN_Marsili.pdf
accesso aperto
Descrizione: Abstract
Tipologia:
Tesi di dottorato
Dimensione
289.7 kB
Formato
Adobe PDF
|
289.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.