In the structural durability assessment, besides the use of theoretical and numerical methods, it is customary to carry out experimental tests to directly estimate the material strength against the application of external loads. The interest is often restricted to bending-torsion loading, considered very common in engineering applications. Over the years, different test methodologies that differ in terms of machines used, geometry specimen and type of excitation, have been proposed. None of them unfortunately can apply a bending-torsion loading to the specimen. Only two layouts seem promising, but they have some limitations both from an economic point of view and from the lack of an experimental validation through a prototype. The following thesis presents an innovative testing system able to perform multi-axial tests on tri-axial shaker in which the bending and torsion loadings acting on the specimen can be controlled independently. The system is composed of a cylindrical and notched specimen and a cantilever beam with two equal tip masses mounted at the specimen free extremity. The system is excited by vertical and/or horizontal base accelerations. The free end of the specimen is constrained by a thin and flexible plate that prevents any bending deformations of the specimen against horizontal excitations, but allows its rotation. So this layout is capable to control independently bending and torsion loadings when vertical and horizontal base accelerations are applied simultaneously. An analytical lumped-mass model and a finite elements model are used to design and verify the proposed system, through the estimation of the dynamic responses, the deformations and the stress state. A testing system prototype was realized and then validated by preliminary tests in the laboratory with harmonic base accelerations . The strain values were monitored in the T-clamping system by strain gauges. Such strains are used by the two models in order to obtain an estimate of the elastic peak stress acting in the net section of the specimen. The close correlation between numerical and experimental results shows that the testing system is really capable to control the bending and torsion loadings independently. Subsequently, fatigue tests (only bending and only torsion) with harmonic accelerations applied by shakers were carried out in the laboratory. It is shown that accelerated tests on shaker with harmonic base accelerations allow to perform constant amplitude fatigue tests , whose results are comparable with those obtained on an MTS machine. Finally, uni-axial fatigue tests with bending random loading and multi-axial fatigue tests with random bending-torsion loadings were performed. A predictive method of fatigue life is presented for both types of tests . The numerical results are in reasonable agreement with the experimental ones, thus proving the goodness of the predictive methods used.
Nella valutazione della durabilità strutturale, oltre all'uso dei metodi teorici e numerici, è consuetudine svolgere prove sperimentali per stimare direttamente la resistenza del materiale a seguito dell’applicazione di carichi esterni. L’interesse è spesso ristretto a carichi di flesso-torsione, considerati molto comuni nelle applicazioni ingegneristiche. Nel corso degli anni sono state proposte diverse metodologie di prova che differiscono in termini di macchine utilizzate, geometria dei campioni e tipo di eccitazione, nessuna delle quali purtroppo in grado di applicare sul provino un carico di flesso-torsione. Solo due layout sembrano promettenti, ma presentano alcune limitazioni sia dal punto di vista economico e sia dalla mancanza di una validazione sperimentale attraverso un prototipo. La seguente tesi presenta un innovativo sistema di prova in grado di eseguire prove multi-assiali su shaker tri-assiale in cui i carichi flessionali e torsionali agenti sul provino sono controllabili in modo indipendente. Il sistema, composto da un provino cilindrico intagliato con masse eccentriche a sbalzo, è eccitato da accelerazioni verticali e/o orizzontali alla base. L’estremità libera del provino è vincolata da una lamina sottile e flessibile che impedisce le deformazioni flessionali del provino quando è eccitato orizzontalmente, ma ne permette la rotazione. Tale layout quindi può essere sollecitato con carichi controllati di flessione e/o torsione, a seguito dell’applicazione simultanea di accelerazioni verticali e orizzontali alla base. Un modello analitico a parametri concentrati e uno agli elementi finiti sono impiegati per la progettazione e verifica del sistema proposto, tramite la stima delle risposte dinamiche, delle deformazioni e dello stato tensionale. Un prototipo del sistema di prova viene realizzato e poi validato tramite prove preliminari in laboratorio con accelerazioni armoniche alla base. Le deformazioni monitorate nel sistema di afferraggio tramite estensimetri sono utilizzate dai due modelli per ottenere una stima delle tensioni di picco elastico agenti nella sezione netta del provino. La stretta correlazione fra i risultati numerici e sperimentali dimostrano che il sistema di prova è realmente in grado di controllare in modo indipendente i carichi flessionali e torsionali. Successivamente, prove a fatica (a sola flessione e a sola torsione) con accelerazioni armoniche applicate da shaker vengono effettuate in laboratorio. Si dimostra che test accelerati su shaker con accelerazioni armoniche alla base permettono di eseguire prove ad ampiezza costante, i cui risultati sono comparabili con quelli ottenuti su una macchina MTS. Infine, in laboratorio vengono eseguite prove a fatica mono-assiale con carico stocastico flessionale e prove multi-assiali con carichi stocastici flesso-torsionali. Per entrambe le tipologie di prova viene presentata una metodologia previsionale della vita a fatica. I risultati numerici sono in ragionevole accordo con quelli sperimentali, provando quindi la bontà dei metodi previsionali impiegati.
PROVE A FATICA MULTI-ASSIALE SU SHAKER ELETTRO-DINAMICO: PROGETTAZIONE, SIMULAZIONI NUMERICHE E RISULTATI SPERIMENTALI
ZANELLATI, Davide
2019
Abstract
In the structural durability assessment, besides the use of theoretical and numerical methods, it is customary to carry out experimental tests to directly estimate the material strength against the application of external loads. The interest is often restricted to bending-torsion loading, considered very common in engineering applications. Over the years, different test methodologies that differ in terms of machines used, geometry specimen and type of excitation, have been proposed. None of them unfortunately can apply a bending-torsion loading to the specimen. Only two layouts seem promising, but they have some limitations both from an economic point of view and from the lack of an experimental validation through a prototype. The following thesis presents an innovative testing system able to perform multi-axial tests on tri-axial shaker in which the bending and torsion loadings acting on the specimen can be controlled independently. The system is composed of a cylindrical and notched specimen and a cantilever beam with two equal tip masses mounted at the specimen free extremity. The system is excited by vertical and/or horizontal base accelerations. The free end of the specimen is constrained by a thin and flexible plate that prevents any bending deformations of the specimen against horizontal excitations, but allows its rotation. So this layout is capable to control independently bending and torsion loadings when vertical and horizontal base accelerations are applied simultaneously. An analytical lumped-mass model and a finite elements model are used to design and verify the proposed system, through the estimation of the dynamic responses, the deformations and the stress state. A testing system prototype was realized and then validated by preliminary tests in the laboratory with harmonic base accelerations . The strain values were monitored in the T-clamping system by strain gauges. Such strains are used by the two models in order to obtain an estimate of the elastic peak stress acting in the net section of the specimen. The close correlation between numerical and experimental results shows that the testing system is really capable to control the bending and torsion loadings independently. Subsequently, fatigue tests (only bending and only torsion) with harmonic accelerations applied by shakers were carried out in the laboratory. It is shown that accelerated tests on shaker with harmonic base accelerations allow to perform constant amplitude fatigue tests , whose results are comparable with those obtained on an MTS machine. Finally, uni-axial fatigue tests with bending random loading and multi-axial fatigue tests with random bending-torsion loadings were performed. A predictive method of fatigue life is presented for both types of tests . The numerical results are in reasonable agreement with the experimental ones, thus proving the goodness of the predictive methods used.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD Davide Zanellati.pdf
accesso aperto
Descrizione: Tesi PhD Davide Zanellati
Tipologia:
Tesi di dottorato
Dimensione
38.02 MB
Formato
Adobe PDF
|
38.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.