The PhD project, carried out in collaboration with ENEA, the research agency I work for, has as objective the characterization, of new mesoporous and nanaostructured adsorbent material by static and dynamic methods used in selective adsorption of different classes of molecules in the field of environmental, pharmaceutical, energy and bioanalytical sector. The characterization involved: amorphous mesoporous functionalized silicas (perfluoroalkyl chains and chiral) and crystalline microporous aluminosilicate (zeolite). By high-performance liquid chromatography (HPLC) YES excess isotherms from binary liquid mixtures were determinated (by means of the front analysis, perturbation on the plateau and pulse tracer) obtaining foundamental data on interphase composition; preferential adsorption and characterization of adsorption sites. The adsorption isotherms have been determined also in batch systems to investigate adsorption and desadsorpion mechanism for different classes of molecules. They were then exploited complementary methods such as differential thermogravimetry and structural analaysis like the Solid State MAS-NMR and X-rays Diffraction technique. The combination of these techniques has allowed to optain a detailed description both on microscopic that the macroscopic properties of adsorption allowing an accurate representation of the processes. Results achieved efinitely have a value both theoretical and practical The study of silicas perfluorinated compounds allowed to increase the knowledge about the retention mechanisms on hydrophobic perfluorinated phases by fluorinated molecules highlighting the importance of the interaction FF (fluorophilicity) on retention and molecular recognition, for feature environmental applications (separation of emerging contaminated). We have been Studied the separation processes on chiral phases in brush type systems, highly efficient for ultrafast separations. The chromatographic columns used were prototype, packed with particles sub-2 um, that reach high efficiencies allowing the separation of enantiomeric pairs in a very short time. Thid information are foundamental for the pharmaceutical industry where the screening of libraries of chiral compounds requires advanced methods. The characterization of zeolites (13X, L, L-dwarf, 3A, clinoptilolite, chabazite) has been foundamental to the study of the adsorption characteristics of rare earth cations (Yttrium and Neodymium). This study has evident economic repercussions due to the importance of rare earths in technological industry applications and also for the increasing difficulties in the supply of these materials. The zeolite with shows the best exchange capacity was the 13X. For this zeolite, the experimental data of adsorption process are well described by a Langmuir isotherm type , whom we can assume that each site may adsorb only a cation and adsorption sites on the surface of the zeolite are energetically equivalent (homogeneous surface adsorption). Results obtained with XRPD confirmed localization of both cations in position II between the sodalite cage and the supercage showing structural modification mainly in exchanged zeolite with Neodymium (Nd-13X) in which a partial loss of crystallinity was observed. This data was confirmed from the MAS NMR spectra of Si and Al. the Na-13X and 13X-Y seems to maintain the same structures, in the Nd-13X, however, spectrum result very spread and widened and without structures, probably due to a strong structural disorder (in agreement with the information obtained by means of XRPD analysis). The Study was completed with a series of kinetic adsorption/desorption measurements which revealed that the zeolite Na-13X keeps unchanged the capacity of ion exchange after several cycles of adsorption and regeneration treatment.
Il progetto di dottorato, svolto in collaborazione con l’ENEA, ente a cui appartengo, ha avuto come obiettivo la caratterizzazione, mediante metodi dinamici e statici, di nuovi materiali adsorbenti mesoporosi e nanostrutturati utilizzabili nel campo dell’adsorbimento selettivo di classi di molecole di interesse ambientale, farmaceutico, bioanalitico e energetico. La caratterizzazione ha riguardato: silici mesoporose amorfe funzionalizzate (catene perfluoroalchiliche e chirali) e materiali cristallini alluminosilicati microporosi (zeoliti). Mediante cromatografia liquida ad alte prestazioni (HPLC) si sono determinate le isoterme di eccesso da miscele liquide binarie (mediante analisi frontale, perturbation sul plateau e tracer pulse) ottenendo dati basilari in merito a: composizione all’interfase; determinazione dell’adsorbimento preferenziale e caratterizzazione dei siti di adsorbimento. Le isoterme di adsorbimento sono state anche determinate in sistemi batch per lo studio del processo di ads/desads di certe classi di molecole. Mediante metodologie di indagine complementari alla misura delle isoterme quali: termogravimetria, MAS NMR allo stato solido e analisi ai raggi-X (XRPD) sono state descritte le proprietà macroscopiche e microscopiche dell’adsorbimento consentendo una rappresentazione accurata dei processi in studio permettendo di ottenere risultati con un valore sia teorico che pratico. Lo studio di silici perfluorurate ha permesso di approfondire le conoscenze sui meccanismi di ritenzione su fasi idrofobiche perfluorurate da parte di molecole fluorurate evidenziando l’importanza dell’interazione F-F (fluorofilicità) sulla ritenzione e il riconoscimento molecolare, ponendo le basi per applicazioni nel campo ambientale (separazione di contaminati emergenti). Sono stati studiati i processi di separazione chirali su fasi di tipo brush in sistemi altamente efficienti per separazioni ultrafast. Le colonne cromatografiche prototipo utilizzate, impaccate con particelle sub 2-µm, raggiungono efficienze elevatissime consentendo la separazione di di coppie enantiomeriche in tempi brevissimi, informazione importante per l’industria farmaceutica dove lo screening di librerie di composti chirali richiede metodi analitici sempre più avanzati. La caratterizzazione delle zeoliti (13X, L, L-nano, 3A, clinoptilolite, chabazite) è stata funzionale allo studio delle caratteristiche di adsorbimento di cationi di terre rare (Ittrio e Neodimio). Questo studio ha ricadute economiche legate all’importanza tecnologica delle terre rare nell’industria elettronica e al loro difficile approvvigionamento. La zeolite con capacità di scambio ionico maggiore è la 13X per la quale i dati sperimentali di adsorbimento sono ben descritti da un modello di Langmuir per cui si può ipotizzare che ciascun sito possa adsorbire un solo catione e che tutti i siti di adsorbimento siano tra loro energeticamente equivalenti. I risultati XRPD hanno confermato la localizzazione di entrambi i cationi in posizione II tra la gabbia sodalitica e la supergabbia e hanno individuato modifiche strutturali a seguito dell’adsorbimento più evidenti nella zeolite scambiata con il Neodimio (Nd-13X) in cui si osserva una parziale perdita di cristallinità, dato confermato anche dagli spettri MAS NMR di Si e Al. Le Na-13X e Y-13X sembrano mantenere la stessa struttura, la Nd-13X, invece, ha spettri molto allargati, fenomeno da imputare con buona probabilità ad un forte disordine strutturale. Lo studio è stato completato con una serie di misure cinetiche di adsorbimento/desadsorbimento che hanno rivelato che la Na-13X mantiene inalterata la sua capacità di scambio ionico dopo più cicli.
Metodi dinamici e statici per la caratterizzazione di materiali adsorbenti mesoporosi e nanostrutturati con applicazioni in campo ambientale e tecnologico
GUZZINATI, Roberta
2017
Abstract
The PhD project, carried out in collaboration with ENEA, the research agency I work for, has as objective the characterization, of new mesoporous and nanaostructured adsorbent material by static and dynamic methods used in selective adsorption of different classes of molecules in the field of environmental, pharmaceutical, energy and bioanalytical sector. The characterization involved: amorphous mesoporous functionalized silicas (perfluoroalkyl chains and chiral) and crystalline microporous aluminosilicate (zeolite). By high-performance liquid chromatography (HPLC) YES excess isotherms from binary liquid mixtures were determinated (by means of the front analysis, perturbation on the plateau and pulse tracer) obtaining foundamental data on interphase composition; preferential adsorption and characterization of adsorption sites. The adsorption isotherms have been determined also in batch systems to investigate adsorption and desadsorpion mechanism for different classes of molecules. They were then exploited complementary methods such as differential thermogravimetry and structural analaysis like the Solid State MAS-NMR and X-rays Diffraction technique. The combination of these techniques has allowed to optain a detailed description both on microscopic that the macroscopic properties of adsorption allowing an accurate representation of the processes. Results achieved efinitely have a value both theoretical and practical The study of silicas perfluorinated compounds allowed to increase the knowledge about the retention mechanisms on hydrophobic perfluorinated phases by fluorinated molecules highlighting the importance of the interaction FF (fluorophilicity) on retention and molecular recognition, for feature environmental applications (separation of emerging contaminated). We have been Studied the separation processes on chiral phases in brush type systems, highly efficient for ultrafast separations. The chromatographic columns used were prototype, packed with particles sub-2 um, that reach high efficiencies allowing the separation of enantiomeric pairs in a very short time. Thid information are foundamental for the pharmaceutical industry where the screening of libraries of chiral compounds requires advanced methods. The characterization of zeolites (13X, L, L-dwarf, 3A, clinoptilolite, chabazite) has been foundamental to the study of the adsorption characteristics of rare earth cations (Yttrium and Neodymium). This study has evident economic repercussions due to the importance of rare earths in technological industry applications and also for the increasing difficulties in the supply of these materials. The zeolite with shows the best exchange capacity was the 13X. For this zeolite, the experimental data of adsorption process are well described by a Langmuir isotherm type , whom we can assume that each site may adsorb only a cation and adsorption sites on the surface of the zeolite are energetically equivalent (homogeneous surface adsorption). Results obtained with XRPD confirmed localization of both cations in position II between the sodalite cage and the supercage showing structural modification mainly in exchanged zeolite with Neodymium (Nd-13X) in which a partial loss of crystallinity was observed. This data was confirmed from the MAS NMR spectra of Si and Al. the Na-13X and 13X-Y seems to maintain the same structures, in the Nd-13X, however, spectrum result very spread and widened and without structures, probably due to a strong structural disorder (in agreement with the information obtained by means of XRPD analysis). The Study was completed with a series of kinetic adsorption/desorption measurements which revealed that the zeolite Na-13X keeps unchanged the capacity of ion exchange after several cycles of adsorption and regeneration treatment.File | Dimensione | Formato | |
---|---|---|---|
Guzzinati_Roberta_Tesi Dottorato XXIX Ciclo.pdf
accesso aperto
Descrizione: Tesi Dottorato Guzzinati Roberta
Tipologia:
Tesi di dottorato
Dimensione
10.4 MB
Formato
Adobe PDF
|
10.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.