We study the predictions for structure formation in an induced gravity dark energy model with a quartic potential. By developing a dedicated Einstein-Boltzmann code, we study self-consistently the dynamics of homogeneous cosmology and of linear perturbations without using any parametrization. By evolving linear perturbations with initial conditions in the radiation era, we accurately recover the quasi-static analytic approximation in the matter dominated era. We use PLANCK 2013 data and a compilation of baryonic acoustic oscillation (BAO) data to constrain the coupling γ to the Ricci curvature and the other cosmological parameters. By connecting the gravitational constant in the Einstein equation to the one measured in a Cavendish-like experiment, we find γ < 0.0012 at 95% CL with PLANCK 2013 and BAO data. This is the tightest cosmological constraint on γ and on the corresponding derived post-Newtonian parameters. Because of a degeneracy between γ and the Hubble constant H0, we show how larger values for γ are allowed, but not preferred at a significant statistical level, when local measurements of H0 are combined in the analysis with PLANCK 2013 data.

CMB and BAO constraints for an induced gravity dark energy model with a quartic potential

Ballardini M.;
2015

Abstract

We study the predictions for structure formation in an induced gravity dark energy model with a quartic potential. By developing a dedicated Einstein-Boltzmann code, we study self-consistently the dynamics of homogeneous cosmology and of linear perturbations without using any parametrization. By evolving linear perturbations with initial conditions in the radiation era, we accurately recover the quasi-static analytic approximation in the matter dominated era. We use PLANCK 2013 data and a compilation of baryonic acoustic oscillation (BAO) data to constrain the coupling γ to the Ricci curvature and the other cosmological parameters. By connecting the gravitational constant in the Einstein equation to the one measured in a Cavendish-like experiment, we find γ < 0.0012 at 95% CL with PLANCK 2013 and BAO data. This is the tightest cosmological constraint on γ and on the corresponding derived post-Newtonian parameters. Because of a degeneracy between γ and the Hubble constant H0, we show how larger values for γ are allowed, but not preferred at a significant statistical level, when local measurements of H0 are combined in the analysis with PLANCK 2013 data.
2015
Umilta, C.; Ballardini, M.; Finelli, F.; Paoletti, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2487745
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 56
social impact