We investigate the possibility of using future photometric and radio surveys to constrain the power spectrum of primordial fluctuations that is predicted by inflationary models with a violation of the slow-roll phase. We forecast constraints with a Fisher analysis on the amplitude of the parametrized features on ultra-large scales, in order to assess whether these could be distinguishable over the cosmic variance. We find that the next generation of photometric and radio surveys has the potential to test these models at a sensitivity better than current CMB experiments and that the synergy between galaxy and CMB observations is able to constrain models with many extra parameters. In particular, an SKA continuum survey with a huge sky coverage and a flux threshold of a few μJy could confirm the presence of a new phase in the early Universe at more than 3σ.
Probing primordial features with next-generation photometric and radio surveys
Ballardini, M.
Primo
;
2018
Abstract
We investigate the possibility of using future photometric and radio surveys to constrain the power spectrum of primordial fluctuations that is predicted by inflationary models with a violation of the slow-roll phase. We forecast constraints with a Fisher analysis on the amplitude of the parametrized features on ultra-large scales, in order to assess whether these could be distinguishable over the cosmic variance. We find that the next generation of photometric and radio surveys has the potential to test these models at a sensitivity better than current CMB experiments and that the synergy between galaxy and CMB observations is able to constrain models with many extra parameters. In particular, an SKA continuum survey with a huge sky coverage and a flux threshold of a few μJy could confirm the presence of a new phase in the early Universe at more than 3σ.File | Dimensione | Formato | |
---|---|---|---|
Ballardini_2018_J._Cosmol._Astropart._Phys._2018_044.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1712.07425.pdf
accesso aperto
Descrizione: versione post-print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.