This study reports the electrical properties of Nd-doped cerium oxide (CeO2) films synthesized by microwave assisted hydrothermal using a two-point probe technique. Positron annihilation lifetime spectroscopy studies evidenced that, as the Nd content rises, a structural disorder occurs. This is caused by an increase in oxygen vacancies surrounded with Nd (defective clusters), with the mean lifetime components ranging between 290 and 300 ps. Particle size estimation showed values from 8.6 to 28.9 nm. Along with the increase of neodymium impurities, also the conductivity increases, due to the hopping conduction mechanism between defective species. This gives rise to a response time of only 6 s, turning these materials candidates to realize gas sensor devices. Ab initio investigations showed that the improved electric conduction is boosted mostly by the reduced Nd2+ than the Ce3+, where the oxygen vacancies play a fundamental role.
Electrical transport mechanisms of Neodymium-doped rare-earth semiconductors
Zonta G.;Malagu C.;
2022
Abstract
This study reports the electrical properties of Nd-doped cerium oxide (CeO2) films synthesized by microwave assisted hydrothermal using a two-point probe technique. Positron annihilation lifetime spectroscopy studies evidenced that, as the Nd content rises, a structural disorder occurs. This is caused by an increase in oxygen vacancies surrounded with Nd (defective clusters), with the mean lifetime components ranging between 290 and 300 ps. Particle size estimation showed values from 8.6 to 28.9 nm. Along with the increase of neodymium impurities, also the conductivity increases, due to the hopping conduction mechanism between defective species. This gives rise to a response time of only 6 s, turning these materials candidates to realize gas sensor devices. Ab initio investigations showed that the improved electric conduction is boosted mostly by the reduced Nd2+ than the Ce3+, where the oxygen vacancies play a fundamental role.File | Dimensione | Formato | |
---|---|---|---|
s10854-022-08098-9.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.41 MB
Formato
Adobe PDF
|
2.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.