Network theory is a branch of mathematics concerned with the analysis of the structure of graphs, the mathematical abstraction of networks. Since the beginning of the twenty-first century, it has become an applied discipline due to the availability of large datasets for social, technological, and biological systems. Although network theory was initially restricted to topological analysis, it has soon become a tool for understanding the emergence, functioning, and evolution of networks and the dynamical processes occurring on them. The application of network theory to neuroscience and, more specifically, to the analysis of brain structure and function represents a qualitatively different view of brain activity and brain-behavior mapping, shifting from a computerlike to a complex system vision of the brain, where networks are endowed with properties which stem in a nontrivial way from those of their constituent nodes. The network approach allows addressing an entirely new set of issues, such as detection and description of modularity and hierarchical structure, evaluation of efficiency and vulnerability, and structure-function relationships in healthy brains and disease.

Network Theory in Neuroscience

Papo, David
;
2014

Abstract

Network theory is a branch of mathematics concerned with the analysis of the structure of graphs, the mathematical abstraction of networks. Since the beginning of the twenty-first century, it has become an applied discipline due to the availability of large datasets for social, technological, and biological systems. Although network theory was initially restricted to topological analysis, it has soon become a tool for understanding the emergence, functioning, and evolution of networks and the dynamical processes occurring on them. The application of network theory to neuroscience and, more specifically, to the analysis of brain structure and function represents a qualitatively different view of brain activity and brain-behavior mapping, shifting from a computerlike to a complex system vision of the brain, where networks are endowed with properties which stem in a nontrivial way from those of their constituent nodes. The network approach allows addressing an entirely new set of issues, such as detection and description of modularity and hierarchical structure, evaluation of efficiency and vulnerability, and structure-function relationships in healthy brains and disease.
2014
978-1-4614-7320-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2483640
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact