Ischemic heart disease is the most common type of heart disorder and represents a major cause of mortality worldwide. Recently, Hypoxia-inducible factor-1 alpha (HIF-1α) has drawn much attention in many research fields, have outlined its importance as a master transcription factor activated during hypoxia, and acts as a key modulator of diverse target genes in the human body including, apoptosis/ survival, metabolic reprogramming in response to hypoxia 1,2. Mitochondria are the powerhouse of oxygen consumption, significantly abundant in the heart, and have emerged as an important regulator of cardiovascular health and disease. Several cellular processes are dedicated to maintaining mitochondrial function in cardiovascular homeostasis. In the present study, we aimed to investigate the role of HIF-1α on mitochondrial homeostasis, especially its contact with the endoplasmic reticulum during hypoxia-induced by deferoxamine in human cardiomyocytes. Further different cellular events in response to hypoxia were studied, such as cell death (apoptosis and necrosis), calcium homeostasis, autophagy/mitophagy. Additionally, we elucidated the effect of HIF-1 in regulating the mitochondrial permeability transition pore (mPTP) in response to hypoxia. Therefore, we aimed to examine the localization of HIF-1α after its stabilization in our cell model and unveil its new possible effective roles during hypoxia. We also compared the effect of HIF-1α on the mitochondrial homeostasis in neonatal cardiomyocytes and cardiac fibroblasts in response to hypoxia. The first part of the work performed experiments allowed the description of the effects of HIF-1α in response to DFO-mediated hypoxia in human cardiomyocytes. The main finding of this work is that HIF-1α plays a dual role in human cardiomyocytes during DFO induced-hypoxia, affecting the mitochondrial function and MAMs subsequently affecting various fundamental cellular processes, autophagy/mitophagy, cell death, calcium homeostasis in a dose and time-dependent manner. In the second part of our work, we identified for the first time a new localization of HIF-1α in human cardiomyocytes in response to hypoxia. Furthermore, the ongoing study on HIF-1α transcription activity showed for the first time two predicted copies of putative HRE encompassing consensus sequences of ITPR3 gene. Additionally, in other cell model neonatal cardiomyocytes (RNC) and cardiac fibroblasts (RCF), hypoxia-induced by DFO affected both cells differently, in which RCF were more resistant to hypoxia-induced mitochondrial oxidative stress compared with RNC. Indeed, the mitochondrial membrane potential of RNC was depolarized at an increased time of hypoxia induction. Conclusively, these findings suggest new insights on the role of the hallmark protein HIF-1α in cardiac cells during hypoxia, emphasizing the relationships between HIF-1α /mitochondria and endoplasmic reticulum, focusing on the cardioprotection effect of HIF-1α.
La cardiopatia ischemica è il tipo più comune di disturbo cardiaco e rappresenta una delle principali cause di mortalità in tutto il mondo. Recentemente, l'Hypoxia-inducible factor-1 alpha (HIF-1α) ha attirato molta attenzione in molti campi di ricerca; è stata delineata la sua importanza come un fattore di trascrizione principale, attivato durante l'ipossia che agisce da modulatore chiave di diversi geni target nel corpo umano, tra cui apoptosi / sopravvivenza e riprogrammazione metabolica in risposta all'ipossia 1,2. I mitocondri sono la centrale elettrica del consumo di ossigeno, significativamente abbondanti nel cuore, e sono emersi come un importante regolatore della salute e della malattia cardiovascolare. Diversi processi cellulari sono dedicati al mantenimento della funzione mitocondriale nell'omeostasi cardiovascolare. Nel presente studio, abbiamo voluto indagare il ruolo di HIF-1α sull'omeostasi mitocondriale, in particolare il suo contatto con il reticolo endoplasmatico durante l'ipossia indotta dalla deferoxamina in cardiomiociti umani. Sono stati studiati altri diversi eventi cellulari in risposta all'ipossia, come la morte cellulare (apoptosi e necrosi), l'omeostasi del calcio, l'autofagia/mitofagia. Inoltre, abbiamo chiarito l'effetto di HIF-1 nella regolazione del poro di transizione della permeabilità mitocondriale (mPTP) in risposta all'ipossia. Pertanto, abbiamo voluto esaminare la localizzazione di HIF-1α, dopo la sua stabilizzazione, nel nostro modello cellulare e svelare i suoi nuovi possibili ruoli efficaci durante l'ipossia. Abbiamo anche confrontato l'effetto di HIF-1α s ull'omeostasi mitocondriale nei cardiomiociti neonatali e nei fibroblasti cardiaci in risposta all'ipossia. La prima parte del lavoro ha permesso di descrivere gli effetti di HIF-1α in risposta all'ipossia mediata da DFO in cardiomiociti umani. La scoperta principale di questo lavoro è che HIF-1α gioca un doppio ruolo nei cardiomiociti umani durante l'ipossia indotta da DFO, influenzando la funzione mitocondriale e le MAMs successivamente influenzando vari processi cellulari fondamentali, l'autofagia/mitofagia, la morte cellulare, l'omeostasi del calcio in modo dose e tempo dipendente. Nella seconda parte del nostro lavoro abbiamo identificato per la prima volta una nuova localizzazione di HIF-1α nei cardiomiociti umani in risposta all'ipossia. Inoltre, lo studio in corso sull'attività di trascrizione di HIF-1α ha mostrato per la prima volta due copie predette di HRE putative che comprendono Sequenze consenso del gene ITPR3. Inoltre, in un altro modello cellulare di cardiomiociti neonatali (RNC) e di fibroblasti cardiaci (RCF), l'ipossia indotta da DFO ha colpito entrambe le cellule in modo diverso, in cui RCF erano più resistenti allo stress ossidativo mitocondriale indotto dall'ipossia rispetto alle RNC. Infatti, il potenziale di membrana mitocondriale le RNC è stato depolarizzato al momento dell'induzione dell'ipossia. In conclusione, questi risultati suggeriscono nuove Informazioni sul ruolo della proteina hallmark HIF-1α nelle cellule cardiache durante l'ipossia, sottolineando le relazioni tra HIF-1α /mitocondri e reticolo endoplasmatico, concentrandosi sull'effetto di cardioprotezione di HIF-1α.
The Role of Hypoxic Inducible Factor-1 Alpha Subunit in Mitochondrial Function in Ischemic Heart Disease
BOUHAMIDA, Esmaa
2022
Abstract
Ischemic heart disease is the most common type of heart disorder and represents a major cause of mortality worldwide. Recently, Hypoxia-inducible factor-1 alpha (HIF-1α) has drawn much attention in many research fields, have outlined its importance as a master transcription factor activated during hypoxia, and acts as a key modulator of diverse target genes in the human body including, apoptosis/ survival, metabolic reprogramming in response to hypoxia 1,2. Mitochondria are the powerhouse of oxygen consumption, significantly abundant in the heart, and have emerged as an important regulator of cardiovascular health and disease. Several cellular processes are dedicated to maintaining mitochondrial function in cardiovascular homeostasis. In the present study, we aimed to investigate the role of HIF-1α on mitochondrial homeostasis, especially its contact with the endoplasmic reticulum during hypoxia-induced by deferoxamine in human cardiomyocytes. Further different cellular events in response to hypoxia were studied, such as cell death (apoptosis and necrosis), calcium homeostasis, autophagy/mitophagy. Additionally, we elucidated the effect of HIF-1 in regulating the mitochondrial permeability transition pore (mPTP) in response to hypoxia. Therefore, we aimed to examine the localization of HIF-1α after its stabilization in our cell model and unveil its new possible effective roles during hypoxia. We also compared the effect of HIF-1α on the mitochondrial homeostasis in neonatal cardiomyocytes and cardiac fibroblasts in response to hypoxia. The first part of the work performed experiments allowed the description of the effects of HIF-1α in response to DFO-mediated hypoxia in human cardiomyocytes. The main finding of this work is that HIF-1α plays a dual role in human cardiomyocytes during DFO induced-hypoxia, affecting the mitochondrial function and MAMs subsequently affecting various fundamental cellular processes, autophagy/mitophagy, cell death, calcium homeostasis in a dose and time-dependent manner. In the second part of our work, we identified for the first time a new localization of HIF-1α in human cardiomyocytes in response to hypoxia. Furthermore, the ongoing study on HIF-1α transcription activity showed for the first time two predicted copies of putative HRE encompassing consensus sequences of ITPR3 gene. Additionally, in other cell model neonatal cardiomyocytes (RNC) and cardiac fibroblasts (RCF), hypoxia-induced by DFO affected both cells differently, in which RCF were more resistant to hypoxia-induced mitochondrial oxidative stress compared with RNC. Indeed, the mitochondrial membrane potential of RNC was depolarized at an increased time of hypoxia induction. Conclusively, these findings suggest new insights on the role of the hallmark protein HIF-1α in cardiac cells during hypoxia, emphasizing the relationships between HIF-1α /mitochondria and endoplasmic reticulum, focusing on the cardioprotection effect of HIF-1α.File | Dimensione | Formato | |
---|---|---|---|
front_eng.pdf
accesso aperto
Descrizione: frontespizio
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
101.98 kB
Formato
Adobe PDF
|
101.98 kB | Adobe PDF | Visualizza/Apri |
THESIS _ ESMAA BOUHAMIDA.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.