Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SFERA Archivio dei prodotti della Ricerca dell'Università di Ferrara
Using 2.93 fb-1 of e+e-collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic D0(+) decays to exclusive final states with an η, e.g., D0→K-π+η, KS0π0η, K+K-η, KS0KS0η, K-π+π0η, KS0π+π-η, KS0π0π0η, and π+π-π0η; D+→KS0π+η, KS0K+η, K-π+π+η, KS0π+π0η, π+π+π-η, and π+π0π0η. Among these decays, the D0→K-π+η and D+→KS0π+η decays have the largest branching fractions, which are B(D0→K-π+η)=(1.853±0.025stat±0.031syst)% and B(D+→KS0π+η)=(1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Measurements of Absolute Branching Fractions of Fourteen Exclusive Hadronic D Decays to η
Ablikim M.;Achasov M. N.;Adlarson P.;Ahmed S.;Albrecht M.;Amoroso A.;An Q.;Anita;Bai X. H.;Bai Y.;Bakina O.;Ferroli R. B.;Balossino I.;Ban Y.;Begzsuren K.;Bennett J. V.;Berger N.;Bertani M.;Bettoni D.;Bianchi F.;Biernat J.;Bloms J.;Bortone A.;Boyko I.;Briere R. A.;Cai H.;Cai X.;Calcaterra A.;Cao G. F.;Cao N.;Cetin S. A.;Chang J. F.;Chang W. L.;Chelkov G.;Chen D. Y.;Chen G.;Chen H. S.;Chen M. L.;Chen S. J.;Chen X. R.;Chen Y. B.;Cheng W. S.;Cibinetto G.;Cossio F.;Cui X. F.;Dai H. L.;Dai J. P.;Dai X. C.;Dbeyssi A.;de Boer R. B.;Dedovich D.;Deng Z. Y.;Denig A.;Denysenko I.;Destefanis M.;de Mori F.;Ding Y.;Dong C.;Dong J.;Dong L. Y.;Dong M. Y.;Du S. X.;Fang J.;Fang S. S.;Fang Y.;Farinelli R.;Fava L.;Feldbauer F.;Felici G.;Feng C. Q.;Fritsch M.;Fu C. D.;Fu Y.;Gao X. L.;Gao Y.;Gao Y. G.;Garzia I.;Gersabeck E. M.;Gilman A.;Goetzen K.;Gong L.;Gong W. X.;Gradl W.;Greco M.;Gu L. M.;Gu M. H.;Gu S.;Gu Y. T.;Guan C. Y.;Guo A. Q.;Guo L. B.;Guo R. P.;Guo Y. P.;Guskov A.;Han S.;Han T. T.;Han T. Z.;Hao X. Q.;Harris F. A.;He K. L.;Heinsius F. H.;Held T.;Heng Y. K.;Himmelreich M.;Holtmann T.;Hou Y. R.;Hou Z. L.;Hu H. M.;Hu J. F.;Hu T.;Hu Y.;Huang G. S.;Huang L. Q.;Huang X. T.;Huang Y. P.;Huang Z.;Huesken N.;Hussain T.;Andersson W. I.;Imoehl W.;Irshad M.;Jaeger S.;Janchiv S.;Ji Q.;Ji Q. P.;Ji X. B.;Ji X. L.;Jiang H. B.;Jiang X. S.;Jiang X. Y.;Jiao J. B.;Jiao Z.;Jin S.;Jin Y.;Johansson T.;Kalantar-Nayestanaki N.;Kang X. S.;Kappert R.;Kavatsyuk M.;Ke B. C.;Keshk I. K.;Khoukaz A.;Kiese P.;Kiuchi R.;Kliemt R.;Koch L.;Kolcu O. B.;Kopf B.;Kuemmel M.;Kuessner M.;Kupsc A.;Kurth M. G.;Kuhn W.;Lane J. J.;Lange J. S.;Larin P.;Lavezzi L.;Leithoff H.;Lellmann M.;Lenz T.;Li C.;Li C. H.;Li C.;Li D. M.;Li F.;Li G.;Li H. B.;Li H. J.;Li J. L.;Li J. Q.;Li K.;Li L. K.;Li L.;Li P. L.;Li P. R.;Li S. Y.;Li W. D.;Li W. G.;Li X. H.;Li X. L.;Li Z. B.;Li Z. Y.;Liang H.;Liang Y. F.;Liang Y. T.;Liao L. Z.;Libby J.;Lin C. X.;Liu B.;Liu B. J.;Liu C. X.;Liu D.;Liu D. Y.;Liu F. H.;Liu F.;Liu F.;Liu H. B.;Liu H. M.;Liu H.;Liu H.;Liu J. B.;Liu J. Y.;Liu K.;Liu K. Y.;Liu K.;Liu L.;Liu Q.;Liu S. B.;Liu S.;Liu T.;Liu X.;Liu Y. B.;Liu Z. A.;Liu Z. Q.;Long Y. F.;Lou X. C.;Lu F. X.;Lu H. J.;Lu J. D.;Lu J. G.;Lu X. L.;Lu Y.;Lu Y. P.;Luo C. L.;Luo M. X.;Luo P. W.;Luo T.;Luo X. L.;Lusso S.;Lyu X. R.;Ma F. C.;Ma H. L.;Ma L. L.;Ma M. M.;Ma Q. M.;Ma R. Q.;Ma R. T.;Ma X. N.;Ma X. X.;Ma X. Y.;Ma Y. M.;Maas F. E.;Maggiora M.;Maldaner S.;Malde S.;Malik Q. A.;Mangoni A.;Mao Y. J.;Mao Z. P.;Marcello S.;Meng Z. X.;Messchendorp J. G.;Mezzadri G.;Min T. J.;Mitchell R. E.;Mo X. H.;Mo Y. J.;Muchnoi N. Yu.;Muramatsu H.;Nakhoul S.;Nefedov Y.;Nerling F.;Nikolaev I. B.;Ning Z.;Nisar S.;Olsen S. L.;Ouyang Q.;Pacetti S.;Pan X.;Pan Y.;Pathak A.;Patteri P.;Pelizaeus M.;Peng H. P.;Peters K.;Pettersson J.;Ping J. L.;Ping R. G.;Pitka A.;Poling R.;Prasad V.;Qi H.;Qi H. R.;Qi M.;Qi T. Y.;Qian S.;Qian W. -B.;Qian Z.;Qiao C. F.;Qin L. Q.;Qin X. P.;Qin X. S.;Qin Z. H.;Qiu J. F.;Qu S. Q.;Rashid K. H.;Ravindran K.;Redmer C. F.;Rivetti A.;Rodin V.;Rolo M.;Rong G.;Rosner Ch.;Rump M.;Sarantsev A.;Schelhaas Y.;Schnier C.;Schoenning K.;Shan D. C.;Shan W.;Shan X. Y.;Shao M.;Shen C. P.;Shen P. X.;Shen X. Y.;Shi H. C.;Shi R. S.;Shi X.;Shi X. D.;Song J. J.;Song Q. Q.;Song W. M.;Song Y. X.;Sosio S.;Spataro S.;Sui F. F.;Sun G. X.;Sun J. F.;Sun L.;Sun S. S.;Sun T.;Sun W. Y.;Sun Y. J.;Sun Y. K.;Sun Y. Z.;Sun Z. T.;Tan Y. H.;Tan Y. X.;Tang C. J.;Tang G. Y.;Tang J.;Thoren V.;Tsednee B.;Uman I.;Wang B.;Wang B. L.;Wang C. W.;Wang D. Y.;Wang H. P.;Wang K.;Wang L. L.;Wang M.;Wang M. Z.;Wang M.;Wang W. H.;Wang W. P.;Wang X.;Wang X. F.;Wang X. L.;Wang Y.;Wang Y. D.;Wang Y. F.;Wang Y. Q.;Wang Z.;Wang Z. Y.;Wang Z.;Wang Z.;Wei D. H.;Weidenkaff P.;Weidner F.;Wen S. P.;White D. J.;Wiedner U.;Wilkinson G.;Wolke M.;Wollenberg L.;Wu J. F.;Wu L. H.;Wu L. J.;Wu X.;Wu Z.;Xia L.;Xiao H.;Xiao S. Y.;Xiao Y. J.;Xiao Z. J.;Xie X. H.;Xie Y. G.;Xie Y. H.;Xing T. Y.;Xiong X. A.;Xu G. F.;Xu J. J.;Xu Q. J.;Xu W.;Xu X. P.;Yan F.;Yan L.;Yan W. B.;Yan W. C.;Yan X.;Yang H. J.;Yang H. X.;Yang L.;Yang R. X.;Yang S. L.;Yang Y. H.;Yang Y. X.;Yang Y.;Yang Z.;Ye M.;Ye M. H.;Yin J. H.;You Z. Y.;Yu B. X.;Yu C. X.;Yu G.;Yu J. S.;Yu T.;Yuan C. Z.;Yuan W.;Yuan X. Q.;Yuan Y.;Yuan Z. Y.;Yue C. X.;Yuncu A.;Zafar A. A.;Zeng Y.;Zhang B. X.;Zhang G.;Zhang H. H.;Zhang H. Y.;Zhang J. L.;Zhang J. Q.;Zhang J. W.;Zhang J. Y.;Zhang J. Z.;Zhang J.;Zhang J.;Zhang L.;Zhang L.;Zhang S.;Zhang S. F.;Zhang T. J.;Zhang X. Y.;Zhang Y.;Zhang Y. H.;Zhang Y. T.;Zhang Y.;Zhang Y.;Zhang Y.;Zhang Z. H.;Zhang Z. Y.;Zhao G.;Zhao J.;Zhao J. Y.;Zhao J. Z.;Zhao L.;Zhao L.;Zhao M. G.;Zhao Q.;Zhao S. J.;Zhao Y. B.;Zhao Y. X.;Zhao Z. G.;Zhemchugov A.;Zheng B.;Zheng J. P.;Zheng Y.;Zheng Y. H.;Zhong B.;Zhong C.;Zhou L. P.;Zhou Q.;Zhou X.;Zhou X. K.;Zhou X. R.;Zhu A. N.;Zhu J.;Zhu K.;Zhu K. J.;Zhu S. H.;Zhu W. J.;Zhu X. L.;Zhu Y. C.;Zhu Z. A.;Zou B. S.;Zou J. H.
2020
Abstract
Using 2.93 fb-1 of e+e-collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic D0(+) decays to exclusive final states with an η, e.g., D0→K-π+η, KS0π0η, K+K-η, KS0KS0η, K-π+π0η, KS0π+π-η, KS0π0π0η, and π+π-π0η; D+→KS0π+η, KS0K+η, K-π+π+η, KS0π+π0η, π+π+π-η, and π+π0π0η. Among these decays, the D0→K-π+η and D+→KS0π+η decays have the largest branching fractions, which are B(D0→K-π+η)=(1.853±0.025stat±0.031syst)% and B(D+→KS0π+η)=(1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2480960
Citazioni
0
22
19
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.