The tunica adventitia ensheathes arteries and veins and contains presumptive mesenchymal stem cells (MSCs) involved in vascular remodeling. We show here that a subset of human adventitial cells express the CD10/CALLA cell surface metalloprotease. Both CD10+ and CD10− adventitial cells displayed phenotypic features of MSCs when expanded in culture. However, CD10+ adventitial cells exhibited higher proliferation, clonogenic and osteogenic potentials in comparison to their CD10− counterparts. CD10+ adventitial cells increased expression of the cell cycle protein CCND2 via ERK1/2 signaling and osteoblastogenic gene expression via NF-κB signaling. CD10 expression was upregulated in adventitial cells through sonic hedgehog-mediated GLI1 signaling. These results suggest that CD10, which marks rapidly dividing cells in other normal and malignant cell lineages, plays a role in perivascular MSC function and cell fate specification. These findings also point to a role for CD10+ perivascular cells in vascular remodeling and calcification.
CD10 expression identifies a subset of human perivascular progenitor cells with high proliferation and calcification potentials
Vezzani B.Secondo
Methodology
;Khan N.;
2020
Abstract
The tunica adventitia ensheathes arteries and veins and contains presumptive mesenchymal stem cells (MSCs) involved in vascular remodeling. We show here that a subset of human adventitial cells express the CD10/CALLA cell surface metalloprotease. Both CD10+ and CD10− adventitial cells displayed phenotypic features of MSCs when expanded in culture. However, CD10+ adventitial cells exhibited higher proliferation, clonogenic and osteogenic potentials in comparison to their CD10− counterparts. CD10+ adventitial cells increased expression of the cell cycle protein CCND2 via ERK1/2 signaling and osteoblastogenic gene expression via NF-κB signaling. CD10 expression was upregulated in adventitial cells through sonic hedgehog-mediated GLI1 signaling. These results suggest that CD10, which marks rapidly dividing cells in other normal and malignant cell lineages, plays a role in perivascular MSC function and cell fate specification. These findings also point to a role for CD10+ perivascular cells in vascular remodeling and calcification.File | Dimensione | Formato | |
---|---|---|---|
Ding CD10.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
12.07 MB
Formato
Adobe PDF
|
12.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.