Currently-available treatments for genetic diseases are still hampered by limitations such as inaccessibility of specific tissues to the treatment, short half-life of infused drugs and difficulty in delivering large therapeutic transgenes. In this context, alternative approaches targeting a specific subset of patients or exploiting precise protein engineering may offer substantial improvements. The aim of this work was to explore three different targeted molecular strategies in paradigmatic genetic disease models. First, we investigated the induction of ribosome readthrough in the context of Fabry disease, a lysosomal storage disorder caused by deficiency of the lysosomal hydrolase α-galactosidase A (AGAL). We identified three nonsense mutations that, due to favourable nucleotide and protein features, could be rescued by G418-mediated readthrough induction, supporting the feasibility of this approach. Moreover, we suggested that readthrough-induction to rescue a dimeric enzyme such as AGAL may result in potentially dominant-negative effects, caused by the interaction of wild-type and missense variants producing dysfunctional heterodimers. The nonsense suppression strategy could provide remarkable advantages for the relevant subset of Fabry disease patients harbouring nonsense mutations, since readthrough-inducing compounds can reach the central nervous system, currently inaccessible to enzyme replacement therapy, and since even low levels of functional AGAL seem sufficient to ameliorate the disease phenotype. The second part of the thesis focused on the rational engineering of a novel factor IX (FIX)-albumin fusion protein to improve replacement therapy for Haemophilia B (HB), an X-linked bleeding disorder caused by deficiency of coagulation FIX. In particular, we exploited a gain-of-function FIX endowed of 8-to-15-fold improved pro-coagulant activity, as well as a rationally engineered albumin variant characterised by enhanced binding to the neonatal Fc receptor (FcRn) and thus endowed with extended half-life. Studies in a panel of mouse models with different FcRn/albumin settings showed a 2.5-fold half-life improvement of the engineered chimaera compared with the commercial fusion protein, thus supporting further studies in animal models. If translated to HB treatment, the improved features of the novel fusion protein would have the potential to address many of the current limits of replacement therapy by widening the therapeutic window and reducing injections frequency, thus ameliorating patients’ quality of life. Finally, in the third part of the thesis, a splicing correction approach was explored for Haemophilia A (HA), an X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). We first characterised all reported point mutations in exon 19 of F8 gene, identifying thirteen variants associated to aberrant splicing, including three exonic variants with no detrimental effect on FVIII secretion and cofactor activity. Subsequently, we identified a unique ExSpeU1 able to completely rescue three exonic and two intronic variants, thus widening the therapeutic potential of this molecule and providing the first proof-of-principle of this approach for HA. The short length of the ExSpeU1 cassette would represent a considerable advantage in the context of HA, since the large dimensions of F8 gene still hamper gene therapy attempts. Future studies will address this splicing correction strategy at the protein level through an in vitro expression system, and at the phenotypic level through the adeno-associated virus-mediated delivery of ExSpeU1 in a HA mouse model. Overall, this thesis provided a preliminary proof-of-concept of three different molecular strategies applied to specific disease models. If translated to patients, these alternative strategies would display relevant improvements compared to available treatments, thus supporting further investigation in this direction.

Il trattamento delle malattie genetiche, pur avendo notevolmente migliorato la qualità di vita dei pazienti, presenta spesso limiti dovuti, ad esempio, all'inaccessibilità del tessuto da trattare, alla breve emivita del farmaco, o alla difficoltà nel veicolare transgeni di grandi dimensioni. Scopo di questa tesi è stato di indagare tre approcci terapeutici alternativi per altrettante patologie genetiche, scelte come modelli paradigmatici. Nella prima parte della tesi è stata indagata l’induzione del readthrough nel contesto della malattia di Fabry, un disordine da accumulo lisosomiale dovuto a carenza dell’enzima α-galattosidasi A (AGAL). Questo approccio correttivo si basa sulla capacità di alcune molecole (e.g. aminoglicosidi) di stimolare la soppressione di mutazioni nonsenso che causerebbero la produzione di una proteina tronca, ed ha il vantaggio di sfruttare sostanze in grado di raggiungere il sistema nervoso centrale al momento non accessibile alla terapia sostitutiva disponibile sul mercato. In questo studio, l’analisi di un pannello di varianti nonsenso causanti la malattia di Fabry ha permesso di identificare tre mutazioni suscettibili alla correzione mediata dall’aminoglicoside G418, fornendo una prima dimostrazione dell’efficacia di questo approccio. I risultati ottenuti dalla co-espressione di varianti wild-type e missenso (predette derivare da readthrough) sembrano inoltre indicare un potenziale effetto negativo di alcune missenso sulla dimerizzazione e quindi sulla funzione di AGAL, un’ipotesi che verrà approfondita in studi futuri. Nella seconda parte della tesi è stata prodotta e caratterizzata una proteina di fusione tra il fattore IX della coagulazione (FIX) e l’albumina, con lo scopo di ottimizzare la terapia sostitutiva dell’emofilia B, una malattia emorragica dovuta a carenza di FIX. In particolare, sono state fuse geneticamente una variante naturale ed iperattiva del FIX e una variante dell’albumina ingegnerizzata per avere maggiore affinità per il recettore neonatale del frammento Fc e quindi emivita prolungata. Studi in vitro ed in vivo, in modelli murini specifici, hanno mostrato che questa nuova proteina di fusione è caratterizzata da maggiore attività coagulante ed emivita prolungata rispetto alla proteina di fusione attualmente in commercio. Le proprietà migliorate di questa molecola, se traslate al trattamento di pazienti affetti da emofilia B, permetterebbero di ridurre la frequenza di somministrazione e migliorare l’aderenza alla terapia e la qualità di vita dei pazienti. Nella terza parte della tesi, è stato indagato un approccio di correzione dello splicing nel contesto dell’emofilia A, una malattia emorragica causata da carenza del fattore VIII della coagulazione. L’analisi tramite minigeni di tutte le varianti riportate a carico dell’esone 19 del gene F8 ha identificato tredici varianti che causano splicing aberrante. Per correggere il processamento del messaggero è stato utilizzato un piccolo RNA nucleare modificato e specifico (ExSpeU1), in grado di reclutare il macchinario di splicing anche in presenza di mutazioni. Una prima analisi ha dimostrato l’effettiva capacità correttiva di questa molecola su cinque diverse mutazioni, sia esoniche che introniche. Studi futuri valuteranno l’efficacia dell’ExSpeU1 nel ripristinare la sintesi di una proteina funzionale (studi in vitro) e nel correggere il fenotipo patologico (in un modello murino di emofilia A). Le piccole dimensioni della cassetta di espressione dell’ExSpeU1 ne permetterebbero la veicolazione tramite vettori virali adeno-associati, attualmente considerati il sistema d’elezione per approcci di terapia genica. Nel complesso, questa tesi fornisce una dimostrazione preliminare delle potenzialità di tre diversi approcci applicati a tre patologie specifiche. Se traslate ai pazienti, queste strategie potrebbero ampliare le opzioni terapeutiche attualmente disponibili.

Targeted molecular strategies for X-linked genetic disorders: the paradigmatic models of Fabry disease and Haemophilias

LOMBARDI, Silvia
2020

Abstract

Currently-available treatments for genetic diseases are still hampered by limitations such as inaccessibility of specific tissues to the treatment, short half-life of infused drugs and difficulty in delivering large therapeutic transgenes. In this context, alternative approaches targeting a specific subset of patients or exploiting precise protein engineering may offer substantial improvements. The aim of this work was to explore three different targeted molecular strategies in paradigmatic genetic disease models. First, we investigated the induction of ribosome readthrough in the context of Fabry disease, a lysosomal storage disorder caused by deficiency of the lysosomal hydrolase α-galactosidase A (AGAL). We identified three nonsense mutations that, due to favourable nucleotide and protein features, could be rescued by G418-mediated readthrough induction, supporting the feasibility of this approach. Moreover, we suggested that readthrough-induction to rescue a dimeric enzyme such as AGAL may result in potentially dominant-negative effects, caused by the interaction of wild-type and missense variants producing dysfunctional heterodimers. The nonsense suppression strategy could provide remarkable advantages for the relevant subset of Fabry disease patients harbouring nonsense mutations, since readthrough-inducing compounds can reach the central nervous system, currently inaccessible to enzyme replacement therapy, and since even low levels of functional AGAL seem sufficient to ameliorate the disease phenotype. The second part of the thesis focused on the rational engineering of a novel factor IX (FIX)-albumin fusion protein to improve replacement therapy for Haemophilia B (HB), an X-linked bleeding disorder caused by deficiency of coagulation FIX. In particular, we exploited a gain-of-function FIX endowed of 8-to-15-fold improved pro-coagulant activity, as well as a rationally engineered albumin variant characterised by enhanced binding to the neonatal Fc receptor (FcRn) and thus endowed with extended half-life. Studies in a panel of mouse models with different FcRn/albumin settings showed a 2.5-fold half-life improvement of the engineered chimaera compared with the commercial fusion protein, thus supporting further studies in animal models. If translated to HB treatment, the improved features of the novel fusion protein would have the potential to address many of the current limits of replacement therapy by widening the therapeutic window and reducing injections frequency, thus ameliorating patients’ quality of life. Finally, in the third part of the thesis, a splicing correction approach was explored for Haemophilia A (HA), an X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). We first characterised all reported point mutations in exon 19 of F8 gene, identifying thirteen variants associated to aberrant splicing, including three exonic variants with no detrimental effect on FVIII secretion and cofactor activity. Subsequently, we identified a unique ExSpeU1 able to completely rescue three exonic and two intronic variants, thus widening the therapeutic potential of this molecule and providing the first proof-of-principle of this approach for HA. The short length of the ExSpeU1 cassette would represent a considerable advantage in the context of HA, since the large dimensions of F8 gene still hamper gene therapy attempts. Future studies will address this splicing correction strategy at the protein level through an in vitro expression system, and at the phenotypic level through the adeno-associated virus-mediated delivery of ExSpeU1 in a HA mouse model. Overall, this thesis provided a preliminary proof-of-concept of three different molecular strategies applied to specific disease models. If translated to patients, these alternative strategies would display relevant improvements compared to available treatments, thus supporting further investigation in this direction.
PINOTTI, Mirko
BRANCHINI, Alessio
PINTON, Paolo
File in questo prodotto:
File Dimensione Formato  
PhD thesis_Lombardi Silvia.PDF

Open Access dal 14/02/2023

Descrizione: PhD thesis
Tipologia: Tesi di dottorato
Dimensione 6.76 MB
Formato Adobe PDF
6.76 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact