Monitoring and diagnostics of gas turbines is a key challenge that can be performed only if the unit is equipped with reliable sensors, thus providing the actual operating condition of the energy system under investigation. Thus, the evaluation of sensor reliability is fundamental since only a reliable measurement can lead to proper decisions about system operation and health state. In fact, a faulty sensor may provide misleading information for decision making, at the expense of business interruption and maintenance-related costs. For this reason, this thesis develops, tunes and validates comprehensive methodologies for the detection and classification of both faults and anomalies affecting gas turbine sensors. This purpose is achieved by means of two different analyses and related tools. First, the Improved Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (I-DCIDS) tool is developed. The I-DCIDS tool comprises two kernels, namely Fault Detection Tool and Sensor Overall Health State Analysis (SOHSA). The former detects and classifies the most frequent fault classes. The latter evaluates the sensor overall health state. The novel diagnostic tool is suitable for assessing the health state of both single sensors and redundant/correlated sensors. The methodology uses basic mathematical laws that require some user-defined configuration parameters. Thus, a sensitivity analysis is carried out on I-DCIDS parameters to derive their optimal setting. The sensitivity analysis is performed on four heterogeneous and challenging field datasets referring to correlated sensors. Then, the I-DCIDS tool is validated by means of an additional field dataset, by proving its detection capability. Furthermore, the I-DCIDS tool is also exploited to evaluate the health state of several single sensors, by analyzing a huge amount of field data that refer to six different physical quantities. These analyses provide some rules of thumb for field operation, with the final aim of identifying time occurrence and magnitude of faulty sensors. The results demonstrate the diagnostic capability of the I-DCIDS approach in a real-world scenario. Moreover, the methodology proves to be suitable for all types of datasets and physical quantities and, thanks to its optimal tuning, also capable of identifying the actual time point of fault onset. A further challenge addressed in this thesis relies on the evaluation of raw data reliability, which may be compromised because of process anomalies. Such anomalies, which have been rarely investigated in the literature, may introduce errors whereby the unit of measure of a sensor is wrongly assumed. In this thesis such a situation is named Unit of Measure Inconsistency (UMI). Thus, this thesis is also aimed at identifying the approach that is mostly able to successfully detect UMI occurrence and classify unlabeled data. Among several alternatives, the capability of three supervised Machine Learning classifiers, i.e., Support Vector Machine, Naïve Bayes and K-Nearest Neighbors is investigated. In addition, a novel methodology, namely Improved Nearest Neighbor is proposed and investigated. The capability of each classifier is assessed by means of several analyses, so that the influence of the reliability of the data used for training the classifier and the number of classes is investigated. Among all tested approaches, the Naïve Bayes classifier and the novel Improved Nearest Neighbor prove to be the most effective, since they demonstrate their effectiveness, robustness and general validity in the majority of the cases. Thanks to the selected classifiers, the actual unit of measure of raw data can be provided and further sensor diagnoses can be safely performed. Finally, it has to be highlighted that all analyses reported in this thesis make use of field data acquired from sensors installed on Siemens gas turbines.
Il monitoraggio e la diagnosi delle turbine a gas sono essenziali e possono essere efficacemente effettuati solo se i sensori installati forniscono una misura attendibile del funzionamento della macchina. Perciò, l’affidabilità dei sensori è un prerequisito indispensabile ai fini di valutare l’effettivo stato di salute della macchina. Infatti, un sensore guasto potrebbe fornire informazioni inesatte, causando perciò l’interruzione della produzione e un incremento dei costi di manutenzione. Per questo motivo, questa tesi sviluppa, calibra e valida metodologie finalizzate ad individuare e classificare i guasti e le anomalie dei sensori installati nelle turbine a gas. La tesi documenta due attività di ricerca con cui è stato raggiunto l’obiettivo prefissato. In primo luogo, è stato sviluppato lo strumento diagnostico denominato “Improved Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors” (I-DCIDS). Tale strumento è costituito dal Fault Detection Tool e Sensor Overall Health State Analysis (SOHSA). Il Fault Detection Tool individua e classifica le categorie di guasto più frequenti. Invece, SOHSA valuta lo stato di salute complessivo del sensore. I-DCIDS può essere utilizzato per valutare lo stato di salute sia di sensori singoli sia di sensori ridondanti/correlati, utilizzando equazioni matematiche che richiedono il settaggio di alcuni parametri di configurazione. A tal fine, viene effettuata un’analisi di sensibilità mediante quattro set di dati eterogenei per definire il valore ottimale di tali parametri. Successivamente, I-DCIDS viene validato su un ulteriore set di dati. Inoltre, I-DCIDS viene anche utilizzato per valutare lo stato di salute di numerosi sensori, analizzando un elevato numero di dati, rappresentativi di sei grandezze fisiche. Queste analisi sono volte ad individuare regole generali con l’obiettivo di determinare la magnitudo del guasto del sensore e l’istante di tempo in cui si verifica. I risultati ottenuti testimoniano la capacità diagnostica di I-DCIDS sul campo sperimentale. Inoltre, si dimostra che la nuova metodologia può analizzare qualsiasi tipo di dataset e grandezza fisica; infatti, grazie al suo settaggio ottimale, I-DCIDS può anche individuare l’esatto istante di tempo in cui il guasto si è verificato. Un altro studio condotto in questa tesi riguarda la valutazione dell’affidabilità dei dati acquisiti, che può essere compromessa a causa di anomalie di processo. Questa tipologia di anomalie, raramente investigata in letteratura, può causare errori tali per cui l’unità di misura di un sensore viene erroneamente assegnata. In questa tesi, tale situazione è denominata “Unit Of Measure Inconsistency” (UMI). Quindi, il secondo obiettivo di questa tesi è quello di individuare lo strumento migliore per diagnosticare con successo l’UMI e per assegnare la corretta unità di misura ai dati privi di tale informazione. A tal fine, vengono esaminati tre classificatori di Machine Learning supervisionato, cioè Support Vector Machine, Naive Bayes e K-Nearest Neighbor. Inoltre, viene proposta ed analizzata una nuova metodologia, chiamata Improved Nearest Neighbor. Le potenzialità di ogni classificatore sono valutate mediante numerose analisi, per verificare come l’affidabilità dei dati utilizzati in fase di addestramento e il numero di classi influenzino le prestazioni delle varie metodologie. Si dimostra che il classificatore Naive Bayes e l’Improved Nearest Neighbor sono i più promettenti in termini di efficacia, robustezza e generalità nel maggior numero di casi considerati. In questo modo, si può assegnare la corretta unità di misura e la diagnosi del sensore potrà quindi essere effettuata efficacemente. Si segnala infine che tutte le analisi riportate in questa tesi utilizzano dati sperimentali acquisiti da sensori installati su turbine a gas di Siemens.
Detection and classification of fults and anomalies in gas turbine sensors by means of statistical filters and machine learning models
MANSERVIGI, LUCREZIA
2021
Abstract
Monitoring and diagnostics of gas turbines is a key challenge that can be performed only if the unit is equipped with reliable sensors, thus providing the actual operating condition of the energy system under investigation. Thus, the evaluation of sensor reliability is fundamental since only a reliable measurement can lead to proper decisions about system operation and health state. In fact, a faulty sensor may provide misleading information for decision making, at the expense of business interruption and maintenance-related costs. For this reason, this thesis develops, tunes and validates comprehensive methodologies for the detection and classification of both faults and anomalies affecting gas turbine sensors. This purpose is achieved by means of two different analyses and related tools. First, the Improved Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (I-DCIDS) tool is developed. The I-DCIDS tool comprises two kernels, namely Fault Detection Tool and Sensor Overall Health State Analysis (SOHSA). The former detects and classifies the most frequent fault classes. The latter evaluates the sensor overall health state. The novel diagnostic tool is suitable for assessing the health state of both single sensors and redundant/correlated sensors. The methodology uses basic mathematical laws that require some user-defined configuration parameters. Thus, a sensitivity analysis is carried out on I-DCIDS parameters to derive their optimal setting. The sensitivity analysis is performed on four heterogeneous and challenging field datasets referring to correlated sensors. Then, the I-DCIDS tool is validated by means of an additional field dataset, by proving its detection capability. Furthermore, the I-DCIDS tool is also exploited to evaluate the health state of several single sensors, by analyzing a huge amount of field data that refer to six different physical quantities. These analyses provide some rules of thumb for field operation, with the final aim of identifying time occurrence and magnitude of faulty sensors. The results demonstrate the diagnostic capability of the I-DCIDS approach in a real-world scenario. Moreover, the methodology proves to be suitable for all types of datasets and physical quantities and, thanks to its optimal tuning, also capable of identifying the actual time point of fault onset. A further challenge addressed in this thesis relies on the evaluation of raw data reliability, which may be compromised because of process anomalies. Such anomalies, which have been rarely investigated in the literature, may introduce errors whereby the unit of measure of a sensor is wrongly assumed. In this thesis such a situation is named Unit of Measure Inconsistency (UMI). Thus, this thesis is also aimed at identifying the approach that is mostly able to successfully detect UMI occurrence and classify unlabeled data. Among several alternatives, the capability of three supervised Machine Learning classifiers, i.e., Support Vector Machine, Naïve Bayes and K-Nearest Neighbors is investigated. In addition, a novel methodology, namely Improved Nearest Neighbor is proposed and investigated. The capability of each classifier is assessed by means of several analyses, so that the influence of the reliability of the data used for training the classifier and the number of classes is investigated. Among all tested approaches, the Naïve Bayes classifier and the novel Improved Nearest Neighbor prove to be the most effective, since they demonstrate their effectiveness, robustness and general validity in the majority of the cases. Thanks to the selected classifiers, the actual unit of measure of raw data can be provided and further sensor diagnoses can be safely performed. Finally, it has to be highlighted that all analyses reported in this thesis make use of field data acquired from sensors installed on Siemens gas turbines.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis - Lucrezia Manservigi_UNIFE - FINAL_sito.pdf
Open Access dal 31/03/2023
Descrizione: PhD Thesis - Lucrezia Manservigi_UNIFE - FINAL_sito
Tipologia:
Tesi di dottorato
Dimensione
12.12 MB
Formato
Adobe PDF
|
12.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.