Regulators of G-protein signaling (RGS) are a class of protein which negatively modulate the intracellular pathways evoked by G-proteins. RGS proteins bind the Gα subunit of the heterotrimer G-protein and accelerate the hydrolysis of GTP, turning the GPCR (G-protein coupled receptor) signal off. Targeting an RGS protein could potentiate the activity of an endogenous or exogenous agonist, improving its selectivity or tissue-specificity. RGS4 is the most studied among RGS proteins. It is mostly expressed in brain areas, such as cortex and basal ganglia (BG). The involvement of RGS4 in various pathological conditions, such as schizophrenia, Parkinson’s disease (PD) and L-Dopa induced dyskinesia (LID) has been proven. This thesis adds to these findings, providing evidence of an involvement of RGS4 in neuroleptic-induced parkinsonism (Study I) and disclosing for the first time an RGS4-NOP receptor interaction which can be targeted in LID therapy (Study II). In Study I, the ability of two RGS4 inhibitors in reversing raclopride-induced akinesia was investigated. Dual probe microdialysis was used to monitor in vivo glutamate release in the substantia nigra reticulata to assess whether these inhibitors impact the activity of the indirect pathway and to identify their site of action. Biochemical signatures of D2 signalling pathway activation following RGS4 inhibition were studied. A preliminary attempt to identify the GPCR targeted by RGS4 was made by challenging RGS4 inhibitors with an mGlu5 receptor antagonist. The main findings were that both RGS inhibitors attenuate neuroleptic-induced parkinsonism, acting at the striatal and nigral levels to attenuate the neuroleptic-induced disinhibition of the indirect pathway. At the striatal level, RGS4 inhibition potentiated the neuroleptic-induced activation of MAPK pathway and did not involve mGlu5 receptors. LID is a cluster of abnormal involuntary movements (AIMs), caused by chronic administration of L-Dopa, which represent the most disabling complication of dopamine replacement therapy of PD. In Study II, an attempt was made to widen the therapeutic window of a NOP receptor agonist by leveraging the RGS4-NOP receptor interaction. The interaction of RGS4 with the NOP receptor was first demonstrated in a cell model, then in striatal slices. Biochemical readouts of NOP activity were the D1 receptor-stimulated cAMP accumulation in cell lines, and the D1 receptor-stimulated number of pERK-positive neurons in slices. The impact of the RGS4 inhibitor CCG-203920 on the antidyskinetic effect of the Nociceptin/orphanin FQ (N/OFQ) opioid peptide (NOP) receptor agonist AT-403 was then evaluated in a rat model of LID. The ability of CCG-203920 to potentiate the antidyskinetic effect relative to the sedative effect of AT-403 was assessed, and the interference of CCG-2003920 with the molecular pathways underlying LID was evaluated using Western analysis of pERK and pGluR1 levels. Finally, Western analysis was also used to monitor levels of RGS4 in the striatum following dopamine-depletion and chronic L-Dopa treatment. The main findings of Study II were the demonstration that RGS4 negatively modulates NOP receptor function, and that RGS4 inhibition potentiates the antidyskinetic effect of the NOP receptor agonist without amplifying its sedative effects. RGS4 inhibition might also be useful to correct the upregulation of RGS4 levels in striatum occurring during dyskinesia expression. In conclusion, these studies confirmed the involvement of RGS4 in basal ganglia dysfunction and the therapeutic potential of RGS4 inhibitors for treating neuroleptic-induced parkinsonism and LID. Targeting signaling molecules downstream of GPCRs, i.e. RGS proteins, can prove a novel tool to improve drug safety and clinical profile.
Le proteine regolatrici del signaling delle proteine G (RGS - Regulators of G-protein signaling) sono una classe di regolatori che modula negativamente i pathway intracellulari innescati dalle proteine G. Le RGS legano la subunità Gα del trimero proteina G e accelerano la velocità di idrolisi del GTP, spegnendo il segnale del GPCR (G-protein coupled receptor). Usare le RGS come target terapeutico può significare potenziare l’attività di agonisti endogeni o esogeni, incrementandone selettività o tessuto-specificità. RGS4 è la proteina RGS più studiata ed è principalmente espressa in aree cerebrali come corteccia e gangli della base (BG). È stato dimostrato il coinvolgimento di RGS4 in diverse patologie come schizofrenia, malattia di Parkinson (MP) e discinesie indotte da L-Dopa (LID - L-Dopa induced dyskinesia). La presente tesi amplia queste conoscenze, mostrando evidenze sperimentali sul ruolo di RGS4 nel parkinsonismo indotto da neurolettici (Studio I) e sull’interazione di RGS4 e il recettore NOP fornendo un nuovo approccio terapeutico per le LID (Studio II). Nello Studio I, è stata investigata l’abilità di due inibitori di RGS4 di invertire l’acinesia indotta da raclopride, un neurolettico. Grazie alla tecnica della microdialisi, è stato possibile monitorare il rilascio di glutammato nella sostanza nera parte reticolata, al fine di verificare l’impatto dei composti sull’attività della via indiretta. Successivamente, è stato analizzato l’effetto dell’inibizione di RGS4 sul signaling D2, attraverso l’analisi di specifici marker molecolari. Infine, è stato condotto uno studio preliminare allo scopo di identificare il GPCR, modulato da RGS4, che media l’effetto anti-acinetico degli inibitori di RGS4. Inizialmente, abbiamo proposto il recettore glutamatergico mGlu5 come possibile target. Questo studio ha messo in luce che gli inibitori di RGS4 attenuano il NIP (neuroleptic-induced parkinsonism), agendo a livello striatale per ridurre la disinibizione della via indiretta mediata dall’azione del neurolettico. A livello striatale, l’inibizione di RGS4 comporta un aumento dell’attivazione della cascata delle MAPK indotta dal neurolettico. Nello Studio II, si è cercato di allargare la finestra terapeutica di un agonista NOP attraverso l’interazione RGS4-recettore NOP. In primo luogo, l’interazione di RGS4 con il recettore NOP è stata dimostrata in un modello cellulare e confermata in fettine di striato. Come readout biochimico dell’attività NOP, è stata usata l’inibizione dell’accumulo di cAMP nelle cellule e dell’aumento di neuroni pERK- positivi nelle fettine, stimolati da agonista D1. L'impatto dell'inibitore RGS4, CCG-203920, sull'effetto antidiscinetico dell'agonista del recettore della Nocicettina/orfanina FQ (N/OFQ), AT-403, è stato quindi valutato in un modello di ratto di LID. È stata valutata la capacità di CCG-203920 di potenziare l'effetto antidiscinetico rispetto all'effetto sedativo di AT-403. Al fine di indagare l'impatto di CCG-2003920 sulle vie molecolari alla base delle LID, grazie alla tecnica del Western blot, è stato possibile analizzare i livelli di pERK e pGluR1. Con la stessa tecnica, sono stati monitorati i livelli di RGS4 nello striato a seguito della deplezione di dopamina e del trattamento cronico con L-Dopa. I principali risultati dello Studio II sono stati la dimostrazione che RGS4 modula negativamente la funzione del recettore NOP e che l'inibizione dell'RGS4 potenzia l'effetto antidiscinetico dell'agonista del recettore NOP, senza amplificarne gli effetti sedativi. Infine, i nostri risultati suggeriscono che l'inibizione di RGS4 potrebbe anche essere utile per annullare la sovraespressione di RGS4 nello striato che si verifica durante l'espressione delle LID. Entrambi gli studi hanno confermato il coinvolgimento di RGS4 nelle disfunzioni dei GB e il potenziale terapeutico degli inibitori di RGS4 nel trattamento del NIP e della LID.
Therapeutic potential of RGS4 blockade in movement disorders
PISANÒ, CLARISSA ANNA
2020
Abstract
Regulators of G-protein signaling (RGS) are a class of protein which negatively modulate the intracellular pathways evoked by G-proteins. RGS proteins bind the Gα subunit of the heterotrimer G-protein and accelerate the hydrolysis of GTP, turning the GPCR (G-protein coupled receptor) signal off. Targeting an RGS protein could potentiate the activity of an endogenous or exogenous agonist, improving its selectivity or tissue-specificity. RGS4 is the most studied among RGS proteins. It is mostly expressed in brain areas, such as cortex and basal ganglia (BG). The involvement of RGS4 in various pathological conditions, such as schizophrenia, Parkinson’s disease (PD) and L-Dopa induced dyskinesia (LID) has been proven. This thesis adds to these findings, providing evidence of an involvement of RGS4 in neuroleptic-induced parkinsonism (Study I) and disclosing for the first time an RGS4-NOP receptor interaction which can be targeted in LID therapy (Study II). In Study I, the ability of two RGS4 inhibitors in reversing raclopride-induced akinesia was investigated. Dual probe microdialysis was used to monitor in vivo glutamate release in the substantia nigra reticulata to assess whether these inhibitors impact the activity of the indirect pathway and to identify their site of action. Biochemical signatures of D2 signalling pathway activation following RGS4 inhibition were studied. A preliminary attempt to identify the GPCR targeted by RGS4 was made by challenging RGS4 inhibitors with an mGlu5 receptor antagonist. The main findings were that both RGS inhibitors attenuate neuroleptic-induced parkinsonism, acting at the striatal and nigral levels to attenuate the neuroleptic-induced disinhibition of the indirect pathway. At the striatal level, RGS4 inhibition potentiated the neuroleptic-induced activation of MAPK pathway and did not involve mGlu5 receptors. LID is a cluster of abnormal involuntary movements (AIMs), caused by chronic administration of L-Dopa, which represent the most disabling complication of dopamine replacement therapy of PD. In Study II, an attempt was made to widen the therapeutic window of a NOP receptor agonist by leveraging the RGS4-NOP receptor interaction. The interaction of RGS4 with the NOP receptor was first demonstrated in a cell model, then in striatal slices. Biochemical readouts of NOP activity were the D1 receptor-stimulated cAMP accumulation in cell lines, and the D1 receptor-stimulated number of pERK-positive neurons in slices. The impact of the RGS4 inhibitor CCG-203920 on the antidyskinetic effect of the Nociceptin/orphanin FQ (N/OFQ) opioid peptide (NOP) receptor agonist AT-403 was then evaluated in a rat model of LID. The ability of CCG-203920 to potentiate the antidyskinetic effect relative to the sedative effect of AT-403 was assessed, and the interference of CCG-2003920 with the molecular pathways underlying LID was evaluated using Western analysis of pERK and pGluR1 levels. Finally, Western analysis was also used to monitor levels of RGS4 in the striatum following dopamine-depletion and chronic L-Dopa treatment. The main findings of Study II were the demonstration that RGS4 negatively modulates NOP receptor function, and that RGS4 inhibition potentiates the antidyskinetic effect of the NOP receptor agonist without amplifying its sedative effects. RGS4 inhibition might also be useful to correct the upregulation of RGS4 levels in striatum occurring during dyskinesia expression. In conclusion, these studies confirmed the involvement of RGS4 in basal ganglia dysfunction and the therapeutic potential of RGS4 inhibitors for treating neuroleptic-induced parkinsonism and LID. Targeting signaling molecules downstream of GPCRs, i.e. RGS proteins, can prove a novel tool to improve drug safety and clinical profile.File | Dimensione | Formato | |
---|---|---|---|
Thesis Pisano CA.pdf
Open Access dal 13/03/2021
Descrizione: Tesi Pisanò CA
Tipologia:
Tesi di dottorato
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.