The investigation of the role played by CO2 circulating within the mantle during partial melting and metasomatic/refertilization processes, together with a re-consideration of its storage capability and re-cycling in the lithospheric mantle, is crucial to unravel the Earth’s main geodynamic processes. In this study, the combination of petrology, CO2 content trapped in bulk rock- and mineral-hosted fluid inclusions (FI), and 3D textural and volumetric characterization of intra- and inter-granular microstructures was used to investigate the extent and modality of CO2 storage in depleted and fertile (or refertilized) Sub-Continental Lithospheric Mantle (SCLM) beneath northern Victoria Land (NVL, Antarctica). Prior to xenoliths entrainment by the host basalt, the Antarctic SCLM may have stored 0.2 vol.% melt and 1.1 vol.% fluids, mostly as FI trails inside mineral phases but also as inter-granular fluids. The amount of CO2 stored in FI varies from 0.1 µg(CO2)/g(sample) in olivine from the anhydrous mantle xenoliths at Greene Point and Handler Ridge, up to 187.3 µg/g in orthopyroxene from the highly metasomatized amphibole-bearing lherzolites at Baker Rocks, while the corresponding bulk CO2 contents range from 0.3 to 57.2 µg/g. Irrespective of the lithology, CO2 partitioning is favoured in orthopyroxene and clinopyroxene-hosted FI (olivine: orthopyroxene = 0.10±0.06 to 0.26±0.09; olivine: clinopyroxene = 0.10±0.05 to 0.27±0.14). The H2O/(H2O+CO2) molar ratios obtained by comparing the CO2 contents of FI to the H2O amount retained in pyroxene lattices vary between 0.72±0.17 and 0.97±0.03, which is well comparable with the values measured in olivine-hosted melt inclusions from Antarctic primary lavas and assumed as representative of the partition of volatiles at the local mantle conditions. From the relationships between mineral chemistry, thermo-, oxy-barometric results and CO2 contents in mantle xenoliths, we speculate that relicts of CO2-depleted mantle are present at Greene Point, representing memory of a CO2-poor tholeiitic refertilization related to the development of the Jurassic Ferrar large magmatic event. On the other hand, a massive mobilization of CO2 took place before the (melt-related) formation of amphibole veins during the alkaline metasomatic event associated with the Cenozoic rift-related magmatism, in response to the storage and recycling of CO2-bearing materials into the Antarctica mantle likely induced by the prolonged Ross subduction.
CO2 storage in the Antarctica Sub-Continental Lithospheric Mantle as revealed by intra- and inter-granular fluids
Casetta, Federico
Primo
;Rizzo, Andrea L.Secondo
;Faccini, Barbara;Faccincani, Luca;Giacomoni, Pier PaoloPenultimo
;Coltorti, MassimoUltimo
2022
Abstract
The investigation of the role played by CO2 circulating within the mantle during partial melting and metasomatic/refertilization processes, together with a re-consideration of its storage capability and re-cycling in the lithospheric mantle, is crucial to unravel the Earth’s main geodynamic processes. In this study, the combination of petrology, CO2 content trapped in bulk rock- and mineral-hosted fluid inclusions (FI), and 3D textural and volumetric characterization of intra- and inter-granular microstructures was used to investigate the extent and modality of CO2 storage in depleted and fertile (or refertilized) Sub-Continental Lithospheric Mantle (SCLM) beneath northern Victoria Land (NVL, Antarctica). Prior to xenoliths entrainment by the host basalt, the Antarctic SCLM may have stored 0.2 vol.% melt and 1.1 vol.% fluids, mostly as FI trails inside mineral phases but also as inter-granular fluids. The amount of CO2 stored in FI varies from 0.1 µg(CO2)/g(sample) in olivine from the anhydrous mantle xenoliths at Greene Point and Handler Ridge, up to 187.3 µg/g in orthopyroxene from the highly metasomatized amphibole-bearing lherzolites at Baker Rocks, while the corresponding bulk CO2 contents range from 0.3 to 57.2 µg/g. Irrespective of the lithology, CO2 partitioning is favoured in orthopyroxene and clinopyroxene-hosted FI (olivine: orthopyroxene = 0.10±0.06 to 0.26±0.09; olivine: clinopyroxene = 0.10±0.05 to 0.27±0.14). The H2O/(H2O+CO2) molar ratios obtained by comparing the CO2 contents of FI to the H2O amount retained in pyroxene lattices vary between 0.72±0.17 and 0.97±0.03, which is well comparable with the values measured in olivine-hosted melt inclusions from Antarctic primary lavas and assumed as representative of the partition of volatiles at the local mantle conditions. From the relationships between mineral chemistry, thermo-, oxy-barometric results and CO2 contents in mantle xenoliths, we speculate that relicts of CO2-depleted mantle are present at Greene Point, representing memory of a CO2-poor tholeiitic refertilization related to the development of the Jurassic Ferrar large magmatic event. On the other hand, a massive mobilization of CO2 took place before the (melt-related) formation of amphibole veins during the alkaline metasomatic event associated with the Cenozoic rift-related magmatism, in response to the storage and recycling of CO2-bearing materials into the Antarctica mantle likely induced by the prolonged Ross subduction.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0024493722000524-main.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
12.46 MB
Formato
Adobe PDF
|
12.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.