Many aspects of animal cognition are plastically adjusted in response to the environment through individual experience. A remarkable example of this cognitive phenotypic plasticity is often observed when comparing individuals raised in a barren environment to individuals raised in an enriched environment. Evidence of enrichment-driven cognitive plasticity in teleost fish continues to grow, but it remains restricted to a few cognitive traits. The purpose of this study was to investigate how environmental enrichment affects multiple cognitive traits (learning, cognitive flexibility, and inhibitory control) in the guppy, Poecilia reticulata. To reach this goal, we exposed new-born guppies to different treatments: an enrichment environment with social companions, natural substrate, vegetation, and live prey or a barren environment with none of the above. After a month of treatment, we tested the subjects in a battery of three cognitive tasks. Guppies from the enriched environment learned a color discrimination faster compared to guppies from the environment with no enrichments. We observed no difference between guppies of the two treatments in the cognitive flexibility task, requiring selection of a previously unrewarded stimulus, nor in the inhibitory control task, requiring the inhibition of the attack response toward live prey. Overall, the results indicated that environmental enrichment had an influence on guppies’ learning ability, but not on the remaining cognitive functions investigated.

Cognitive Phenotypic Plasticity: Environmental Enrichment Affects Learning but Not Executive Functions in a Teleost Fish, Poecilia reticulata

Montalbano G.
Primo
;
Bertolucci C.
Secondo
;
Lucon Xiccato T.
Ultimo
2022

Abstract

Many aspects of animal cognition are plastically adjusted in response to the environment through individual experience. A remarkable example of this cognitive phenotypic plasticity is often observed when comparing individuals raised in a barren environment to individuals raised in an enriched environment. Evidence of enrichment-driven cognitive plasticity in teleost fish continues to grow, but it remains restricted to a few cognitive traits. The purpose of this study was to investigate how environmental enrichment affects multiple cognitive traits (learning, cognitive flexibility, and inhibitory control) in the guppy, Poecilia reticulata. To reach this goal, we exposed new-born guppies to different treatments: an enrichment environment with social companions, natural substrate, vegetation, and live prey or a barren environment with none of the above. After a month of treatment, we tested the subjects in a battery of three cognitive tasks. Guppies from the enriched environment learned a color discrimination faster compared to guppies from the environment with no enrichments. We observed no difference between guppies of the two treatments in the cognitive flexibility task, requiring selection of a previously unrewarded stimulus, nor in the inhibitory control task, requiring the inhibition of the attack response toward live prey. Overall, the results indicated that environmental enrichment had an influence on guppies’ learning ability, but not on the remaining cognitive functions investigated.
2022
Montalbano, G.; Bertolucci, C.; Lucon Xiccato, T.
File in questo prodotto:
File Dimensione Formato  
biology-11-00064-v2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478209
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact