This paper describes the in situ monitoring of indoor air quality (IAQ) in two dwellings, using low-cost IAQ sensors to provide high-density temporal and spatial data. IAQ measurements were conducted over 2-week periods in the kitchen and bedroom of each home during the winter, spring, and summer seasons, characterized by different outside parameters, that were simultane-ously measured. The mean indoor PM2.5 concentrations were about 15 μg m−3 in winter, they dropped to values close to 10 μg m−3 in spring and increased to levels of about 13 μg m−3 in summer. During the winter campaign, indoor PM2.5 was found mainly associated with particle penetration inside the rooms from outdoors, because of the high outdoor PM2.5 levels in the season. Such pollution winter episodes occur frequently in the study region, due to the combined contributions of strong anthropogenic emissions and stable atmospheric conditions. The concentrations of indoor volatile organic compounds (VOCs) and CO2 increased with the number of occupants (humans and pets), as likely associated with consequent higher emissions through breathing and metabolic pro-cesses. They also varied with occupants’ daily activities, like cooking and cleaning. Critic CO2 levels above the limit of 1000 ppm were observed in spring campaign, in the weeks close to the end of the COVID-19 quarantine, likely associated with the increased time that the occupants spent at home.

Indoor air quality in domestic environments during periods close to italian COVID-19 lockdown

Pietrogrande M. C.
Primo
;
Casari L.
Secondo
;
Demaria G.
Penultimo
;
Russo M.
Ultimo
2021

Abstract

This paper describes the in situ monitoring of indoor air quality (IAQ) in two dwellings, using low-cost IAQ sensors to provide high-density temporal and spatial data. IAQ measurements were conducted over 2-week periods in the kitchen and bedroom of each home during the winter, spring, and summer seasons, characterized by different outside parameters, that were simultane-ously measured. The mean indoor PM2.5 concentrations were about 15 μg m−3 in winter, they dropped to values close to 10 μg m−3 in spring and increased to levels of about 13 μg m−3 in summer. During the winter campaign, indoor PM2.5 was found mainly associated with particle penetration inside the rooms from outdoors, because of the high outdoor PM2.5 levels in the season. Such pollution winter episodes occur frequently in the study region, due to the combined contributions of strong anthropogenic emissions and stable atmospheric conditions. The concentrations of indoor volatile organic compounds (VOCs) and CO2 increased with the number of occupants (humans and pets), as likely associated with consequent higher emissions through breathing and metabolic pro-cesses. They also varied with occupants’ daily activities, like cooking and cleaning. Critic CO2 levels above the limit of 1000 ppm were observed in spring campaign, in the weeks close to the end of the COVID-19 quarantine, likely associated with the increased time that the occupants spent at home.
2021
Pietrogrande, M. C.; Casari, L.; Demaria, G.; Russo, M.
File in questo prodotto:
File Dimensione Formato  
indoor lockdown ijerph-18-04060.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 975.65 kB
Formato Adobe PDF
975.65 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478203
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 37
social impact