Hybrid energy plants (HEPs), which include both fossil fuel technologies and renewable energy systems, can provide an important step toward a sustainable energy supply. In fact, the hybridization of renewable energy systems with gas turbines (GTs), which are fed by fossil fuels allows an acceptable compromise, so that high fossil fuel efficiency and high share of renewables can be potentially achieved. Moreover, electrical and thermal energy storage systems increase the flexibility of the energy plant and effectively manage the variability of energy production and demand. This paper investigates the optimal sizing of a HEP, which combines an industrial GT, renewable energy systems, and energy storage technologies. The considered renewable energy system is a photovoltaic system (PV), while the energy storage technologies are electrical energy storage and thermal energy storage. Moreover, a compression chiller and a gas boiler (GB) are also considered. For this purpose, the load profiles of electricity, heating, and cooling during a whole year are taken into account for the case study of the Campus of the University of Parma (Italy). The sizing optimization problem of the different technologies composing the HEP is solved by using a genetic algorithm, with the goal of minimizing the primary energy consumption (PEC). Moreover, different operation strategies are analyzed and compared so that plant operation is also optimized. The results demonstrate that the optimal sizing of the HEP, coupled with the optimized operation strategy, allows high average cogeneration efficiency (up to 84%), thus minimizing PEC.

Sizing and Operation of a Hybrid Energy Plant Composed of Industrial Gas Turbines, Renewable Energy Systems and Energy Storage Technologies

Bahlawan H.
Primo
;
Losi E.;Manservigi L.;Spina P. R.
Penultimo
;
Venturini M.
Ultimo
2021

Abstract

Hybrid energy plants (HEPs), which include both fossil fuel technologies and renewable energy systems, can provide an important step toward a sustainable energy supply. In fact, the hybridization of renewable energy systems with gas turbines (GTs), which are fed by fossil fuels allows an acceptable compromise, so that high fossil fuel efficiency and high share of renewables can be potentially achieved. Moreover, electrical and thermal energy storage systems increase the flexibility of the energy plant and effectively manage the variability of energy production and demand. This paper investigates the optimal sizing of a HEP, which combines an industrial GT, renewable energy systems, and energy storage technologies. The considered renewable energy system is a photovoltaic system (PV), while the energy storage technologies are electrical energy storage and thermal energy storage. Moreover, a compression chiller and a gas boiler (GB) are also considered. For this purpose, the load profiles of electricity, heating, and cooling during a whole year are taken into account for the case study of the Campus of the University of Parma (Italy). The sizing optimization problem of the different technologies composing the HEP is solved by using a genetic algorithm, with the goal of minimizing the primary energy consumption (PEC). Moreover, different operation strategies are analyzed and compared so that plant operation is also optimized. The results demonstrate that the optimal sizing of the HEP, coupled with the optimized operation strategy, allows high average cogeneration efficiency (up to 84%), thus minimizing PEC.
2021
Bahlawan, H.; Gambarotta, A.; Losi, E.; Manservigi, L.; Morini, M.; Spina, P. R.; Venturini, M.
File in questo prodotto:
File Dimensione Formato  
149bis.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2477505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact