In this paper, we present a conservative cell-centered Lagrangian Finite Volume scheme for solving the hyperelasticity equations on unstructured multidimensional grids. The starting point of the present approach is the cell-centered FV discretization named EUCCLHYD and introduced in the context of Lagrangian hydrodynamics. Here, it is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves with piecewise linear spatial reconstruction. The ADER (Arbitrary high order schemes using DERivatives) approach is adopted to obtain second-order of accuracy in time. This strategy has been successfully tested in a hydrodynamics context and the present work aims at extending it to the case of hyperelasticity. Here, the hyperelasticity equations are written in the updated Lagrangian framework and the dedicated Lagrangian numerical scheme is derived in terms of nodal solver, Geometrical Conservation Law (GCL) compliance, subcell forces and compatible discretization. The Lagrangian numerical method is implemented in 3D under MPI parallelization framework allowing to handle genuinely large meshes. A relatively large set of numerical test cases is presented to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior and general robustness across discontinuities and ensuring at least physical admissibility of the solution where appropriate. Pure elastic neo-Hookean and non-linear materials are considered for our benchmark test problems in 2D and 3D. These test cases feature material bending, impact, compression, non-linear deformation and further bouncing/detaching motions.
A 3D cell-centered ADER MOOD Finite Volume method for solving updated Lagrangian hyperelasticity on unstructured grids
Boscheri W.
Primo
;Loubere R.Secondo
;
2022
Abstract
In this paper, we present a conservative cell-centered Lagrangian Finite Volume scheme for solving the hyperelasticity equations on unstructured multidimensional grids. The starting point of the present approach is the cell-centered FV discretization named EUCCLHYD and introduced in the context of Lagrangian hydrodynamics. Here, it is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves with piecewise linear spatial reconstruction. The ADER (Arbitrary high order schemes using DERivatives) approach is adopted to obtain second-order of accuracy in time. This strategy has been successfully tested in a hydrodynamics context and the present work aims at extending it to the case of hyperelasticity. Here, the hyperelasticity equations are written in the updated Lagrangian framework and the dedicated Lagrangian numerical scheme is derived in terms of nodal solver, Geometrical Conservation Law (GCL) compliance, subcell forces and compatible discretization. The Lagrangian numerical method is implemented in 3D under MPI parallelization framework allowing to handle genuinely large meshes. A relatively large set of numerical test cases is presented to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior and general robustness across discontinuities and ensuring at least physical admissibility of the solution where appropriate. Pure elastic neo-Hookean and non-linear materials are considered for our benchmark test problems in 2D and 3D. These test cases feature material bending, impact, compression, non-linear deformation and further bouncing/detaching motions.File | Dimensione | Formato | |
---|---|---|---|
article_blm.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
13.25 MB
Formato
Adobe PDF
|
13.25 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021999121006744-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.