Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts.

The role of dorsal premotor cortex in joint action stopping

Cardellicchio P.
Co-primo
Conceptualization
;
Dolfini E.
Co-primo
Investigation
;
D'Ausilio A.
Ultimo
Supervision
2021

Abstract

Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts.
2021
Cardellicchio, P.; Dolfini, E.; D'Ausilio, A.
File in questo prodotto:
File Dimensione Formato  
2021-iScience.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2477296
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact