In the last few years, the Emilia-Romagna region, in Italy, has seen a significant growth in the tourism economy, due to an increasing number of Italian and foreigner visitors. This has highlighted the need of a strong synergy between tourist facilities and local administrations. In this context, Smart City solutions and Machine Learning (ML) can play an important role to analyse the amount of data generated in this sector. This paper presents part of the work done within the ongoing POLIS-EYE project, targeted at the development of a Policy Support System (PSS) and related intelligent services for an optimized management of the Smart City in the specific domain of tourism in this region. Several results obtained from the application of supervised and unsupervised ML techniques show the effectiveness in the prediction of the tourist flow in different scenarios, e.g., towards regional museums and big events. The integration of these results in the PSS architecture will allow a smart management of the territory on behalf of the administration and will be replicable outside the region.

Machine Learning in a Policy Support System for Smart Tourism Management

Elena Bellodi
Primo
;
Riccardo Zese
Secondo
;
2022

Abstract

In the last few years, the Emilia-Romagna region, in Italy, has seen a significant growth in the tourism economy, due to an increasing number of Italian and foreigner visitors. This has highlighted the need of a strong synergy between tourist facilities and local administrations. In this context, Smart City solutions and Machine Learning (ML) can play an important role to analyse the amount of data generated in this sector. This paper presents part of the work done within the ongoing POLIS-EYE project, targeted at the development of a Policy Support System (PSS) and related intelligent services for an optimized management of the Smart City in the specific domain of tourism in this region. Several results obtained from the application of supervised and unsupervised ML techniques show the effectiveness in the prediction of the tourist flow in different scenarios, e.g., towards regional museums and big events. The integration of these results in the PSS architecture will allow a smart management of the territory on behalf of the administration and will be replicable outside the region.
2022
9783030954666
Smart City platform, Tourism, Data-driven predictive modelling, Machine Learning
File in questo prodotto:
File Dimensione Formato  
poliseye.pdf

solo gestori archivio

Descrizione: Post-print
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
fulltext_LOD2021.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.48 MB
Formato Adobe PDF
4.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2476247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact