Fermi Pasta Ulam (FPU) recurrence process describes the ability of a nonlinear system to excite multiple modes and then to return to its initial state. In fiber optics, such process has been investigated within the framework of modulation instability (MI) [1] , corresponding to growth of weak perturbations at the expense of a strong pump. Nonlinear stage of MI and FPU recurrences in optical fibers have been widely investigated and many results have been obtained with an efficient compensation of the losses [2]. Investigations on water waves [3] demonstrated that dissipation of their water tank forces the system to operate in a single regime. Here, we provide a deeper and complete study on the impact of dissipation of the FPU dynamics. Thanks to a fiber optics system, we have been able to control the loss coefficient, allowing us to trigger the different corresponding FPU regimes.

Loss induced multiple symmetry breakings in the Fermi Pasta Ulam recurrence process

Trillo S.
Penultimo
;
2021

Abstract

Fermi Pasta Ulam (FPU) recurrence process describes the ability of a nonlinear system to excite multiple modes and then to return to its initial state. In fiber optics, such process has been investigated within the framework of modulation instability (MI) [1] , corresponding to growth of weak perturbations at the expense of a strong pump. Nonlinear stage of MI and FPU recurrences in optical fibers have been widely investigated and many results have been obtained with an efficient compensation of the losses [2]. Investigations on water waves [3] demonstrated that dissipation of their water tank forces the system to operate in a single regime. Here, we provide a deeper and complete study on the impact of dissipation of the FPU dynamics. Thanks to a fiber optics system, we have been able to control the loss coefficient, allowing us to trigger the different corresponding FPU regimes.
2021
9781665418768
Fermi-Pasta-Ulam recurrence, modulational instabili, optical fibers, nonlinear waves
File in questo prodotto:
File Dimensione Formato  
Vanderhaegen_EQEC-2021-ef_4_1.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 407.33 kB
Formato Adobe PDF
407.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2475955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact