Sensitive magneto-optical polarimetry was proposed by E. Iacopini and E. Zavattini in 1979 to detect vacuum electrodynamic non-linearity, in particular Vacuum Magnetic Birefringence (VMB). This process is predicted in QED via the fluctuation of electron–positron virtual pairs but can also be due to hypothetical Axion-Like Particles (ALPs) and/or MilliCharged Particles (MCP). Today ALPs are considered a strong candidate for Dark Matter. Starting in 1992 the PVLAS collaboration, financed by INFN, Italy, attempted to measure VMB conceptually following the original 1979 scheme based on an optical cavity permeated by a time-dependent magnetic field and heterodyne detection. Two setups followed differing basically in the magnet: the first using a rotating superconducting 5.5 T dipole magnet at the Laboratori Nazionali di Legnaro, Legnaro, Italy and the second using two rotating permanent 2.5 T dipole magnets at the INFN section of Ferrara. At present PVLAS is the experiment which has set the best limit in VMB reaching a noise floor within a factor 7 of the predicted QED signal: ∆n(QED) = 2.5 × 10−23 @ 2.5 T. It was also shown that the noise floor was due to the optical cavity and a larger magnet is the only solution to increase the signal to noise ratio. The PVLAS experiment ended at the end of 2018. A new effort, VMB@CERN, which plans to use a spare LHC dipole magnet at CERN with a new modified optical scheme, is now being proposed. In this review, a detailed description of the PVLAS effort and the comprehension of its limits leading to a new proposal will be given.

Optical polarimetry for fundamental physics

Zavattini G.;
2021

Abstract

Sensitive magneto-optical polarimetry was proposed by E. Iacopini and E. Zavattini in 1979 to detect vacuum electrodynamic non-linearity, in particular Vacuum Magnetic Birefringence (VMB). This process is predicted in QED via the fluctuation of electron–positron virtual pairs but can also be due to hypothetical Axion-Like Particles (ALPs) and/or MilliCharged Particles (MCP). Today ALPs are considered a strong candidate for Dark Matter. Starting in 1992 the PVLAS collaboration, financed by INFN, Italy, attempted to measure VMB conceptually following the original 1979 scheme based on an optical cavity permeated by a time-dependent magnetic field and heterodyne detection. Two setups followed differing basically in the magnet: the first using a rotating superconducting 5.5 T dipole magnet at the Laboratori Nazionali di Legnaro, Legnaro, Italy and the second using two rotating permanent 2.5 T dipole magnets at the INFN section of Ferrara. At present PVLAS is the experiment which has set the best limit in VMB reaching a noise floor within a factor 7 of the predicted QED signal: ∆n(QED) = 2.5 × 10−23 @ 2.5 T. It was also shown that the noise floor was due to the optical cavity and a larger magnet is the only solution to increase the signal to noise ratio. The PVLAS experiment ended at the end of 2018. A new effort, VMB@CERN, which plans to use a spare LHC dipole magnet at CERN with a new modified optical scheme, is now being proposed. In this review, a detailed description of the PVLAS effort and the comprehension of its limits leading to a new proposal will be given.
Zavattini, G.; Della Valle, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2475933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact