Three Fe(ii) pyridylNHC-carboxylic heteroleptic complexes with (ARM7 and ARM11) or without spacers (ARM13) between the pyridine and the COOH anchoring group have been designed and characterized with the aim to increase the metal to surface charge separation and avoid undesired recombination processes in iron-sensitized DSCCs. The ARM13-sensitized DSSC scored the highest efficiency ever reported for an iron-sensitized solar cell (1.44%) providing that Mg2+ cations and NBu4I were present in the electrolyte, thus substantially boosting the photocurrent. The gain in efficiency derived from the use of MgI2-based electrolytes was rationalized by employing DFT calculations for the isolated dye sensitizers and dye/TiO2 interface models.

Record power conversion efficiencies for iron(ii)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization

Marchini E.
Secondo
;
Argazzi R.;Caramori S.
Penultimo
;
2021

Abstract

Three Fe(ii) pyridylNHC-carboxylic heteroleptic complexes with (ARM7 and ARM11) or without spacers (ARM13) between the pyridine and the COOH anchoring group have been designed and characterized with the aim to increase the metal to surface charge separation and avoid undesired recombination processes in iron-sensitized DSCCs. The ARM13-sensitized DSSC scored the highest efficiency ever reported for an iron-sensitized solar cell (1.44%) providing that Mg2+ cations and NBu4I were present in the electrolyte, thus substantially boosting the photocurrent. The gain in efficiency derived from the use of MgI2-based electrolytes was rationalized by employing DFT calculations for the isolated dye sensitizers and dye/TiO2 interface models.
2021
Reddy Marri, A.; Marchini, E.; Cabanes, V. D.; Argazzi, R.; Pastore, M.; Caramori, S.; Gros, P. C.
File in questo prodotto:
File Dimensione Formato  
manuscript.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
J MATER CHEM A REVISED LAST.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2475804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact