A series of six new Fe(II)NHC-carboxylic sensitizers with their ancillary ligand decorated with functions of varied electronic properties have been designed with the aim to increase the metal-to- surface charge separation and light harvesting in iron-based dye-sensitized solar cells (DSSCs). ARM130 scored the highest efficiency ever reported for an iron-sensitized solar cell (1.83 %) using Mg2+ and NBu4I-based electrolyte and a thick 20 mu m TiO2 anode. Computational modelling, transient absorption spectroscopy and electrochemical impedance spectroscopy (EIS) revealed that the electronic properties induced by the dimethoxyphenyl-substituted NHC ligand of ARM130 led to the best combination of electron injection yield and spectral sensitivity breadth.
A Series of Iron(II)-NHC Sensitizers with Remarkable Power Conversion Efficiency in Photoelectrochemical Cells
Edoardo MarchiniMembro del Collaboration Group
;Roberto ArgazziMembro del Collaboration Group
;Stefano Caramori
Writing – Original Draft Preparation
;Carlo Alberto Bignozzi;
2021
Abstract
A series of six new Fe(II)NHC-carboxylic sensitizers with their ancillary ligand decorated with functions of varied electronic properties have been designed with the aim to increase the metal-to- surface charge separation and light harvesting in iron-based dye-sensitized solar cells (DSSCs). ARM130 scored the highest efficiency ever reported for an iron-sensitized solar cell (1.83 %) using Mg2+ and NBu4I-based electrolyte and a thick 20 mu m TiO2 anode. Computational modelling, transient absorption spectroscopy and electrochemical impedance spectroscopy (EIS) revealed that the electronic properties induced by the dimethoxyphenyl-substituted NHC ligand of ARM130 led to the best combination of electron injection yield and spectral sensitivity breadth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.