The design of critical facilities needs a targeted computation of the expected ground motion levels. The Trans Adriatic Pipeline (TAP) is the pipeline that transports natural gas from the Greek-Turkish border, through Greece and Albania, to Italy. We present here the probabilistic seismic hazard analysis (PSHA) that we performed for this facility, and the deaggregation of the results, aiming to identify the dominant seismic sources for a selected site along the Albanian coast, where one of the two main compressor stations is located. PSHA is based on an articulated logic tree of twenty branches, consisting of two models for source, seismicity, estimation of the maximum magnitude, and ground motion. The area with the highest hazard occurs along the Adriatic coast of Albania (PGA between 0.8 and 0.9 g on rock for a return period of 2475 years), while strong ground motions are also expected to the north of Thessaloniki, Kavala, in the southern Alexandroupolis area, as well as at the border between Greece and Turkey. The earthquakes contributing most to the hazard of the test site at high and low frequencies (1 and 5 Hz) and the corresponding design events for the TAP infrastructure have been identified as local quakes with MW 6.6 and 6.0, respectively.

Seismic hazard for the Trans Adriatic Pipeline (TAP). Part 1: probabilistic seismic hazard analysis along the pipeline

Caputo R.;Rapti D.;
2021

Abstract

The design of critical facilities needs a targeted computation of the expected ground motion levels. The Trans Adriatic Pipeline (TAP) is the pipeline that transports natural gas from the Greek-Turkish border, through Greece and Albania, to Italy. We present here the probabilistic seismic hazard analysis (PSHA) that we performed for this facility, and the deaggregation of the results, aiming to identify the dominant seismic sources for a selected site along the Albanian coast, where one of the two main compressor stations is located. PSHA is based on an articulated logic tree of twenty branches, consisting of two models for source, seismicity, estimation of the maximum magnitude, and ground motion. The area with the highest hazard occurs along the Adriatic coast of Albania (PGA between 0.8 and 0.9 g on rock for a return period of 2475 years), while strong ground motions are also expected to the north of Thessaloniki, Kavala, in the southern Alexandroupolis area, as well as at the border between Greece and Turkey. The earthquakes contributing most to the hazard of the test site at high and low frequencies (1 and 5 Hz) and the corresponding design events for the TAP infrastructure have been identified as local quakes with MW 6.6 and 6.0, respectively.
2021
Slejko, D.; Rebez, A.; Santulin, M.; Garcia-Pelaez, J.; Sandron, D.; Tamaro, A.; Civile, D.; Volpi, V.; Caputo, R.; Ceramicola, S.; Chatzipetros, A.; Daja, S.; Fabris, P.; Geletti, R.; Karvelis, P.; Moratto, L.; Papazachos, C.; Pavlides, S.; Rapti, D.; Rossi, G.; Sarao, A.; Sboras, S.; Vuan, A.; Zecchin, M.; Zgur, F.; Zuliani, D.
File in questo prodotto:
File Dimensione Formato  
2021_Slejko_et_alii_BEE.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 9.3 MB
Formato Adobe PDF
9.3 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2474948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact