Background: The loss of arm function is a common and disabling outcome after stroke. Robot-assisted upper limb (UL) training may improve outcomes. The aim of this study was to explore the effect of robot-assisted training using end-effector and exoskeleton robots on UL function following a stroke in real-life clinical practice. Methods: A total of 105 patients affected by a first-ever supratentorial stroke were enrolled in 18 neurorehabilitation centers and treated with electromechanically assisted arm training as an add-on to conventional therapy. Both interventions provided either an exoskeleton or an end-effector device (as per clinical practice) and consisted of 20 sessions (3/5 times per week; 6–8 weeks). Patients were assessed by validated UL scales at baseline (T0), post-treatment (T1), and at three-month follow-up (T2). The primary outcome was the Fugl-Meyer Assessment for the upper extremity (FMA-UE). Results: FMA-UE improved at T1 by 6 points on average in the end-effector group and 11 points on average in the exoskeleton group (p < 0.0001). Exoskeletons were more effective in the subacute phase, whereas the end-effectors were more effective in the chronic phase (p < 0.0001). Conclusions: robot-assisted training might help improve UL function in stroke patients as an add-on treatment in both subacute and chronic stages. Pragmatic and highmethodological studies are needed to confirm the showed effectiveness of the exoskeleton and end-effector devices.
Robot-assisted training for upper limb in stroke (ROBOTAS): An observational, multicenter study to identify determinants of efficacy
Straudi S.;
2021
Abstract
Background: The loss of arm function is a common and disabling outcome after stroke. Robot-assisted upper limb (UL) training may improve outcomes. The aim of this study was to explore the effect of robot-assisted training using end-effector and exoskeleton robots on UL function following a stroke in real-life clinical practice. Methods: A total of 105 patients affected by a first-ever supratentorial stroke were enrolled in 18 neurorehabilitation centers and treated with electromechanically assisted arm training as an add-on to conventional therapy. Both interventions provided either an exoskeleton or an end-effector device (as per clinical practice) and consisted of 20 sessions (3/5 times per week; 6–8 weeks). Patients were assessed by validated UL scales at baseline (T0), post-treatment (T1), and at three-month follow-up (T2). The primary outcome was the Fugl-Meyer Assessment for the upper extremity (FMA-UE). Results: FMA-UE improved at T1 by 6 points on average in the end-effector group and 11 points on average in the exoskeleton group (p < 0.0001). Exoskeletons were more effective in the subacute phase, whereas the end-effectors were more effective in the chronic phase (p < 0.0001). Conclusions: robot-assisted training might help improve UL function in stroke patients as an add-on treatment in both subacute and chronic stages. Pragmatic and highmethodological studies are needed to confirm the showed effectiveness of the exoskeleton and end-effector devices.File | Dimensione | Formato | |
---|---|---|---|
jcm-10-05245-with-cover.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
401.67 kB
Formato
Adobe PDF
|
401.67 kB | Adobe PDF | Visualizza/Apri |
hdl 113922474575 pre-print.pdf
solo gestori archivio
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
526.85 kB
Formato
Adobe PDF
|
526.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.