Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SFERA Archivio dei prodotti della Ricerca dell'Università di Ferrara
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3–4σ significance and the neutrino oscillation parameters sin2θ12, Δm212, and |Δm322| can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3σ significance; a lower limit of the proton lifetime, 8.34×1033 years (90% C.L.), can be set by searching for p→ν̄K+; detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 (300) all-flavor neutrino–proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of ∼400 events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the >20 m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the >96% transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of 3.02%/E(MeV ) in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <0.5% in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <10 mBq/m3. Acrylic panels of radiopurity <0.5 ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to ∼10Hz. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility OSIRIS, and a near detector TAO.
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3–4σ significance and the neutrino oscillation parameters sin2θ12, Δm212, and |Δm322| can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3σ significance; a lower limit of the proton lifetime, 8.34×1033 years (90% C.L.), can be set by searching for p→ν̄K+; detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 (300) all-flavor neutrino–proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of ∼400 events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the >20 m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the >96% transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of 3.02%/E(MeV ) in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <0.5% in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <10 mBq/m3. Acrylic panels of radiopurity <0.5 ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to ∼10Hz. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility OSIRIS, and a near detector TAO.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472831
Citazioni
ND
153
134
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.