Background: The present manuscript aims to be a narrative review evaluating the association between inflammation in chorioamnionitis and damage on respiratory centers, peripheral airways, and lungs, explaining the pathways responsible for apnea in preterm babies born by delivery after chorioamnionitis. Methods: A combination of keywords and MESH words was used, including: "inflammation", "chorioamnionitis", "brainstem", "cytokines storm", "preterm birth", "neonatal apnea", and "apnea physiopathology". All identified papers were screened for title and abstracts by the two authors to verify whether they met the proper criteria to write the topic. Results: Chorioamnionitis is usually associated with Fetal Inflammatory Response Syndrome (FIRS), resulting in injury of brain and lungs. Literature data have shown that infections causing chorioamnionitis are mostly associated with inflammation and consequent hypoxia-mediated brain injury. Moreover, inflammation and infection induce apneic episodes in neonates, as well as in animal samples. Chorioamnionitis-induced inflammation favors the systemic secretion of pro-inflammatory cytokines that are involved in abnormal development of the respiratory centers in the brainstem and in alterations of peripheral airways and lungs. Conclusions: Preterm birth shows a suboptimal development of the brainstem and abnormalities and altered development of peripheral airways and lungs. These alterations are responsible for reduced respiratory control and apnea. To date, mostly animal studies have been published. Therefore, more clinical studies on the role of chorioamninitis-induced inflammation on prematurity and neonatal apnea are necessary.
Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions
Giovanna Vitaliti
Primo
Writing – Original Draft Preparation
;Raffaele FalsaperlaUltimo
Writing – Review & Editing
2021
Abstract
Background: The present manuscript aims to be a narrative review evaluating the association between inflammation in chorioamnionitis and damage on respiratory centers, peripheral airways, and lungs, explaining the pathways responsible for apnea in preterm babies born by delivery after chorioamnionitis. Methods: A combination of keywords and MESH words was used, including: "inflammation", "chorioamnionitis", "brainstem", "cytokines storm", "preterm birth", "neonatal apnea", and "apnea physiopathology". All identified papers were screened for title and abstracts by the two authors to verify whether they met the proper criteria to write the topic. Results: Chorioamnionitis is usually associated with Fetal Inflammatory Response Syndrome (FIRS), resulting in injury of brain and lungs. Literature data have shown that infections causing chorioamnionitis are mostly associated with inflammation and consequent hypoxia-mediated brain injury. Moreover, inflammation and infection induce apneic episodes in neonates, as well as in animal samples. Chorioamnionitis-induced inflammation favors the systemic secretion of pro-inflammatory cytokines that are involved in abnormal development of the respiratory centers in the brainstem and in alterations of peripheral airways and lungs. Conclusions: Preterm birth shows a suboptimal development of the brainstem and abnormalities and altered development of peripheral airways and lungs. These alterations are responsible for reduced respiratory control and apnea. To date, mostly animal studies have been published. Therefore, more clinical studies on the role of chorioamninitis-induced inflammation on prematurity and neonatal apnea are necessary.File | Dimensione | Formato | |
---|---|---|---|
CHORIOAMNIONITIS, INFLAMMATION AND NEONATAL APNEA.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
317.2 kB
Formato
Adobe PDF
|
317.2 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.