We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first $q-$eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the $q-$spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.
Positive solutions to the sublinear Lane-Emden equation are isolated
Brasco L.Primo
;Franzina G.
Ultimo
2021
Abstract
We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first $q-$eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the $q-$spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bradepfra_final_rev.pdf
solo gestori archivio
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
592.12 kB
Formato
Adobe PDF
|
592.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Positive solutions to the sublinear Lane Emden equation are isolated.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.